European Biophysics Journal

, Volume 34, Issue 4, pp 306–313

Estimating rate constants from single ion channel currents when the initial distribution is known

  • Yu-Kai The
  • Jacqueline Fernandez
  • M. Oana Popa
  • Holger Lerche
  • Jens Timmer
Article

Abstract

Single ion channel currents can be analysed by hidden or aggregated Markov models. A classical result from Fredkin et al. (Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, vol I, pp 269–289, 1985) states that the maximum number of identifiable parameters is bounded by 2nonc, where no and nc denote the number of open and closed states, respectively. We show that this bound can be overcome when the probabilities of the initial distribution are known and the data consist of several sweeps.

Keywords

Hidden Markov models Aggregated Markov models Identifiability Maximum likelihood estimation Sodium channel 

References

  1. Böhle T, Benndorf K (1995a) Multimodal action of single Na+ channels in myocardial mouse cells. Biophys J 68:121–130Google Scholar
  2. Böhle T, Benndorf K (1995b) Voltage-dependent properties of three different gating modes in single cardiac Na+ channels. Biophys J 69:873–882Google Scholar
  3. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channel. Neuron 26(1):13–25CrossRefPubMedGoogle Scholar
  4. Chung S-H, Moore JB, Xia L, Premkumar LS, Gage PW (1990) Characterization of single channel currents using digital signal processing techniques based on hidden Markov models. Philos Trans R Soc Lond B 329:265–285Google Scholar
  5. Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond B 300:1–59Google Scholar
  6. Colquhoun D, Hawkes AG, Merlushkin A, Edmonds B (1997) Properties of single ion channel currents elicited by a pulse of agonist concentration or voltage. Philos Trans R Soc Lond A 355:1743–1786Google Scholar
  7. Fredkin DR, Rice JA (1986) On aggregated Markov processes. J Appl Prob 23:208–214Google Scholar
  8. Fredkin DR, Rice JA (1992) Maximum likelihood estimation and identification directly from single-channel recordings. Proc R Soc Lond B 249:125–132Google Scholar
  9. Fredkin DR, Rice JA (2001) Fast evaluation of the likelihood of an HMM: ion channel currents with filtering and colored noise. IEEE Trans Signal Process 49(3):625–633Google Scholar
  10. Fredkin DR, Montal M, Rice JA (1985) Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. In: Le Cam LM, Olshen RA (eds) Proceedings of the Berkeley conference in Honor of Jerzy Neyman and Jack Kiefer, volume I, pp 269–289Google Scholar
  11. Horn R (1991) Estimating the number of channels in patch recordings. Biophys J 60:433–439Google Scholar
  12. Horn R, Lange K (1983) Estimating kinetic constants from single channel data. Biophys J 43:207–223Google Scholar
  13. Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534Google Scholar
  14. Horn R, Vandenberg C, Lange K (1984) Statistical analysis of single sodium channels. Biophys J 45:323–335Google Scholar
  15. Ito H, Amari SI, Kobayashi K (1992) Identifiability of hidden Markov information sources and their minimum degree of freedom. IEEE Trans Inf Theory 38(2):324–333Google Scholar
  16. Kienker P (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B 236:269–309Google Scholar
  17. Michalek S, Lerche H, Wagner M, Mitrovic N, Schiebe M, Lehmann-Horn F, Timmer J (1999) On identification of Na+-channel gating schemes using moving-average filtered hidden Markov models. Eur Biophys J 28(7):605–609Google Scholar
  18. Michalek S, Wagner M, Timmer J (2000) A new approximate likelihood estimator for ARMA-filtered hidden Markov models. IEEE Trans Signal Process 48(6):1537–1547Google Scholar
  19. Popa MO, Alekov AK, Maljevic S, Mitrovic N, Lehmann-Horn F, Lerche H (2002) Cooperative effect on fast inactivation of S4-S5 loops of domains III and IV of the Na+ channel (hNaV 1.4). Biophys J 82:90a–91aGoogle Scholar
  20. Qin F, Auerbach A, Sachs F (2000) Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J 79:1928–1944Google Scholar
  21. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–285CrossRefGoogle Scholar
  22. The Numerical Algorithms Group Ltd. (1999) Fortran Library Mark 19. The Numerical Algorithms Group Ltd., OxfordGoogle Scholar
  23. Vandenberg CA, Bezanilla F (1991) Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon. Biophys J 60:1499–1510Google Scholar
  24. Vandenberg CA, Horn R (1984) Inactivation viewed through single sodium channels. J Gen Physiol 84:535–564Google Scholar
  25. Venkataramanan L, Kuc R, Sigworth F (1998) Identification of hidden Markov models for ion channel currents—Part II: state-dependent excess noise. IEEE Trans Signal Process 46(7):1916–1929Google Scholar
  26. Venkataramanan L, Walsh JL, Kuc R, Sigworth F (1998) Identification of hidden Markov models for ion channel currents—Part I: colored background noise. IEEE Trans Signal Process 46(7):1901–1915Google Scholar
  27. Venkataramanan L, Kuc R, Sigworth FJ (2000) Identification of hidden Markov models for ion channel currents—Part III: bandlimited, sampled data. IEEE Trans Signal Process 48(2):376–385Google Scholar
  28. Wagner M, Michalek S, Timmer J (1999) Estimating transition rates in aggregated Markov models of ion-channel gating with loops and with nearly equal dwell times. Proc R Soc Lond B 266:1919–1926Google Scholar
  29. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci USA 89(22):10910–10914Google Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  • Yu-Kai The
    • 1
    • 2
  • Jacqueline Fernandez
    • 3
  • M. Oana Popa
    • 3
  • Holger Lerche
    • 3
  • Jens Timmer
    • 1
    • 2
  1. 1.Institut für PhysikAlbert-Ludwigs-UniversitätFreiburgGermany
  2. 2.Freiburger Zentrum für Datenanalyse und ModellbildungAlbert-Ludwigs-UniversitätFreiburgGermany
  3. 3.Abteilung für Angewandte Physiologie und Neurologische KlinikUniversität UlmUlmGermany

Personalised recommendations