European Biophysics Journal

, Volume 33, Issue 8, pp 732–741 | Cite as

Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

Article

Abstract

Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This paper presents a comprehensive comparison of the effects of cholesterol, lanosterol, and ergosterol upon the bending elastic properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles. Measurements are made using vesicle fluctuation analysis, a nonintrusive technique that we have recently improved for determining membrane bending rigidity. Giving a detailed account of the vesicle fluctuation analysis technique, we describe how the gravitational stabilization of the vesicles enhances image contrast, vesicle yield, and the quality of data. Implications of gravity on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity.

Keywords

Lipid bilayer Mechanical properties Membrane elasticity 

Abbreviations

DMPC

Dimyristoylphosphocholine

POPC

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

VFA

Vesicle fluctuation analysis

GUV

Giant unilamellar vesicle

TLC

Thin layer chromatography

EPR

Electron paramagnetic resonance

NMR

Nuclear magnetic resonance

References

  1. Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers. Biochemistry 31:6739–6747PubMedGoogle Scholar
  2. Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311CrossRefGoogle Scholar
  3. Angelova MI, Soléau S, Méléard PH, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog Colloid Polym Sci 89:127–131Google Scholar
  4. Backer JM, Dawidowicz EA (1981) Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase. J Biol Chem 256:586–588PubMedGoogle Scholar
  5. Bivas I, Hanusse P, Bothorel P, Lalanne J, Aguerre-Chariol O (1987) An application of the optical microscopy to the determination of the curvature elastic modulus of biological and model membranes. J Physique 48:855–867Google Scholar
  6. Bloch K (1976) On the evolution of a biosynthetic pathway. In: Kornberg A et al. (eds) Reflections on biochemistry. Pergamon Press, New York, p 143Google Scholar
  7. Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 19:47–92Google Scholar
  8. Brochard F, Lennon JF (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Physique 36:1035–1047Google Scholar
  9. Brochard F, de Gennes PG, Pfeuty P (1976) Surface tension and deformations of membrane structures: relation to two-dimensional phase transitions. J Physique 37:1099–1104Google Scholar
  10. Döbereiner HG, Selchow O, Lipowsky R (1999) Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur Biophys J 28:174–178CrossRefGoogle Scholar
  11. Duwe HP, Kaes J, Sackmann E (1990) Bending elastic moduli of lipid bilayers: modulation by solutes. J Phys Fr 51:945–962Google Scholar
  12. Endress E, Bayerl S, Prechtel K, Maier C, Merkel R, Bayerl TM (2002a) The effect of cholesterol, lanosterol and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study. Langmuir 18:3293–3299CrossRefGoogle Scholar
  13. Endress E, Heller H, Casalta H, Brown MF, Bayerl TM (2002b) Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochem 41:13078–13086CrossRefGoogle Scholar
  14. Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097CrossRefPubMedGoogle Scholar
  15. Faucon JF, Mitov MD, Méléard P, Bivas I, Bothorel P (1989) Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements. J Phys Fr 50:2389–2414Google Scholar
  16. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:693–703Google Scholar
  17. Henriksen JR, Ipsen JH (2002) Thermal undulations of quasi-spherical vesicles stabilized by gravity. Eur Phys J 9:365–374CrossRefGoogle Scholar
  18. Henriksen JR, Ipsen JH (2004) Measurement of membrane elasticity by micro-pipette aspiration. Eur Phys J (in press)Google Scholar
  19. Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172PubMedGoogle Scholar
  20. Ipsen JH, Mouritsen OG, Bloom M (1990) Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order: the effects of cholesterol. Biophys J 57:405–412PubMedGoogle Scholar
  21. Jacobs R, Oldfield E (1979) Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin-dipalmitoyllecithin and dimyristoyllecitihin-cholesterol mixtures. Biochem 18:3280–3285Google Scholar
  22. Méléard P, Gerbeaud C, Pott T, Fernandez-Puente L, Bivas I, Mitov MD, Dufourcq J, Bothorel J (1997) Bending elasticities of model membranes: influence of temperature and sterol content. Biophys J 72:2616–629PubMedGoogle Scholar
  23. Miao L, Lomholt MA, Kleis J (2002a) Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Eur Phys J E 9:143–160PubMedGoogle Scholar
  24. Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG (2002b) From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J 82:1429–1444PubMedGoogle Scholar
  25. Milner ST, Safran SA (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36:4371–4379CrossRefPubMedGoogle Scholar
  26. Needham D, Nunn RS (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 58:997–1009PubMedGoogle Scholar
  27. Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673PubMedGoogle Scholar
  28. Nielsen M, Thewalt J, Miao L, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG (2000) Sterol evolution and the physics of membranes. Europhys Lett 52:368–374CrossRefGoogle Scholar
  29. Niggeman G, Kummrow M, Helfrich W (1995) The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. Phys II Fr 5:413–425CrossRefGoogle Scholar
  30. Patty PJ, Frisken BJ (2003) The pressure-dependence of the size of extruded vesicles. Biophys J 85:996–1004PubMedGoogle Scholar
  31. Schneider MB, Jenkins JT, Webb WW (1984) Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J Physique 45:1457–1472Google Scholar
  32. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137Google Scholar
  33. Semer R, Gerelinter E (1979) A spin label study of the effects of sterols on egg lecithin bilayers. Chem Phys Lipids 23:201–211CrossRefGoogle Scholar
  34. Smondyrev AM, Berkowitz ML (2001) Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophys J 80:1649–1658PubMedGoogle Scholar
  35. Urbina JA, Pekerar S, Le H, Patterson J, Montez B, Oldfield E (1995) Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim Biophys Acta 1238:163–167CrossRefPubMedGoogle Scholar
  36. Vist MR, Davis JH (1990) Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures—H-2 nuclear magnetic resonance and differential scanning calorimetry. Biochem 29:451–264Google Scholar
  37. Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem 276:33540–33546CrossRefPubMedGoogle Scholar
  38. Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849CrossRefPubMedGoogle Scholar
  39. Yeagle PL (1985) Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. Biochim Biophys Acta 815:33–36CrossRefPubMedGoogle Scholar

Copyright information

© EBSA 2004

Authors and Affiliations

  • Jonas Henriksen
    • 1
  • Amy C. Rowat
    • 2
  • John H. Ipsen
    • 3
  1. 1.MEMPHYS Centre for Biomembrane Physics, Department of ChemistryTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of PhysicsUniversity of Southern DenmarkOdenseDenmark
  3. 3.Department of ChemistryUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations