European Biophysics Journal

, Volume 33, Issue 6, pp 490–496 | Cite as

Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature

  • Gerhard M. Artmann
  • Laura Burns
  • Jaume M. Canaves
  • Aysegül Temiz-Artmann
  • Gerd W. Schmid-Schönbein
  • Shu Chien
  • Christina Maggakis-Kelemen
Article

Previously we have shown that human red blood cells (RBCs) undergo a sudden change from blocking to passing through a 1.3±0.2-µm micropipette when applying an aspiration pressure of 2.3 kPa at a critical transition temperature (Tc=36.4±0.3 °C). Low-shear viscosity measurements suggested that changes in the molecular properties of hemoglobin might be responsible for this effect. To evaluate structural changes in hemoglobin at the critical temperature, we have used circular dichroism (CD) spectroscopy. The thermal denaturation curves of human hemoglobin A (HbA) and hemoglobin S (HbS) upon heating between 25 and 60 °C were non-linear and showed accelerated denaturation between 35 and 39 °C with a midpoint at 37.2±0.6 °C. The transition was reversible below 39 °C and independent of solution pH (pH 6.8–7.8). It was also independent of the oxygenation state of hemoglobin, since a sample that was extensively deoxygenated with N2 showed a similar transition by CD. These findings suggest that a structural change in hemoglobin may enable the cellular passage phenomenon as well as the temperature-dependent decrease in viscosity of RBC solutions.

Keywords

Circular dichroism Heat denaturation Hemoglobin oxygenation state Red blood cells 

References

  1. Artmann GM, Kelemen C, Porst D, Bueldt G, Chien S (1998) Temperature transitions of protein properties in human red blood cells. Biophys J 75:3179–3183PubMedGoogle Scholar
  2. Asakura T, Segal ME, Friedman S, Schwartz E (1975) A rapid test for sickle hemoglobin. J Am Med Assoc 233:156CrossRefGoogle Scholar
  3. Bettati S, Mozzarelli A, Perutz MF (1998) Allosteric mechanism of haemoglobin: rupture of salt-bridges raises the oxygen affinity of the T-structure. J Mol Biol 281:581–585CrossRefPubMedGoogle Scholar
  4. Bierzynski A (2001) Methods of peptide conformation studies. Acta Biochim Pol 48:1091–1099PubMedGoogle Scholar
  5. Cameron IL, Ord VA, Fullerton GD (1988) Water of hydration in the intra- and extra-cellular environment of human erythrocytes. Biochem Cell Biol 66:1186–1199PubMedGoogle Scholar
  6. Chang CT, Wu CS, Yang JT (1978) Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem 91:13–31PubMedGoogle Scholar
  7. Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612PubMedGoogle Scholar
  8. Clementi ME, Condo SG, Castagnola M, Giardina B (1994) Hemoglobin function under extreme life conditions. Eur J Biochem 223:309–317PubMedGoogle Scholar
  9. Geraci G, Parkhurst LJ (1981) Circular dichroism spectra of hemoglobins. Methods Enzymol 76:262–275PubMedGoogle Scholar
  10. Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10CrossRefPubMedGoogle Scholar
  11. Guidotti G (1967) Studies on the chemistry of hemoglobin. IV. The mechanism of reaction with ligands. J Biol Chem 242:3704–3712PubMedGoogle Scholar
  12. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRefPubMedGoogle Scholar
  13. Kelemen C, Chien S, Artmann GM (2001) Temperature transition of human hemoglobin at body temperature: effects of calcium. Biophys J 80:2622–2630PubMedGoogle Scholar
  14. Kinderlerer J, Lehmann H, Tipton KF (1970) Thermal denaturation of human haemoglobins. Biochem J 119:66P–67PGoogle Scholar
  15. Kinderlerer J, Lehmann H, Tipton KF (1973) The thermal denaturation of human oxyhaemoglobins A, A2, C and S. Biochem J 135:805–814PubMedGoogle Scholar
  16. Li R, Nagai Y, Nagai M (2000) Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin. J Inorg Biochem 82:93–101CrossRefPubMedGoogle Scholar
  17. Lumry R (1974) Participation of water in protein reactions. Ann NY Acad Sci 227:471–485PubMedGoogle Scholar
  18. Lumry R, Rajender S (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–1227PubMedGoogle Scholar
  19. Makarevic J, Jokic M, Frkanec L, Katalenic D, Zinic M (2002) Gels with exceptional thermal stability formed by bis(amino acid) oxalamide gelators and solvents of low polarity. Chem Commun (Cambridge) 2238–2239Google Scholar
  20. Mihailescu MR, Russu IM (2001) A signature of the T→R transition in human hemoglobin. Proc Natl Acad Sci USA 98:3773–3777CrossRefPubMedGoogle Scholar
  21. Monti JP, Gallice P, Baz M, Murisasco A, Crevat A, Elsen R (1989) Intraerythrocytic pH variations during hemodialysis: a 31P NMR study. Kidney Int 35:871–874PubMedGoogle Scholar
  22. Perutz MF (1990) Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol 52:1–25CrossRefPubMedGoogle Scholar
  23. Perutz MF, Wilkinson AJ, Paoli M, Dodson GG (1998) The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu Rev Biophys Biomol Struct 27:1–34CrossRefPubMedGoogle Scholar
  24. Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA 99:5596–5600PubMedGoogle Scholar
  25. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305PubMedGoogle Scholar
  26. Privalov PL, Khechinashvili NN, Atanasov BP (1971) Thermodynamic analysis of thermal transitions in globular proteins. I. Calorimetric study of chymotrypsinogen, ribonuclease and myoglobin. Biopolymers 10:1865–1890PubMedGoogle Scholar
  27. Ruckpaul K, Rein H, Jung F (1971) Correlations between thermal stability and circular dichroism of hemoglobin derivatives of different species. FEBS Lett 13:193–194CrossRefPubMedGoogle Scholar
  28. Ryan M, Levy MM (2003) Clinical review: fever in intensive care unit patients. Crit Care 7:221–225CrossRefPubMedGoogle Scholar
  29. Silva MM, Rogers PH, Arnone A (1992) A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem 267:17248–17256PubMedGoogle Scholar
  30. Srinivasan R, Rose GD (1994) The T-to-R transformation in hemoglobin: a reevaluation. Proc Natl Acad Sci USA 91:11113–11117PubMedGoogle Scholar
  31. Temiz A, Baskurt OK, Pekcetin C, Kandemir F, Gure A (2000) Leukocyte activation, oxidant stress and red blood cell properties after acute, exhausting exercise in rats. Clin Hemorheol Microcirc 22:253–259PubMedGoogle Scholar
  32. Walters MC, Nienhuis AW, Vichinsky E (2002) Novel therapeutic approaches in sickle cell disease. Hematology (Am Soc Hematol Educ Program) 10–34Google Scholar
  33. Yang T, Olsen KW (1988) Effects of crosslinking on the thermal stability of hemoglobins. II. The stabilization of met-, cyanomet-, and carbonmonoxyhemoglobins A and S with bis(3,5-dibromosalicyl) fumarate. Arch Biochem Biophys 261:283–290PubMedGoogle Scholar
  34. Yang T, Olsen KW (1990) The thermal stability of Hb O-Indonesia [alpha 116(GH4)Glu----Lys]. Hemoglobin 14:641–646PubMedGoogle Scholar

Copyright information

© EBSA 2004

Authors and Affiliations

  • Gerhard M. Artmann
    • 1
  • Laura Burns
    • 2
  • Jaume M. Canaves
    • 2
  • Aysegül Temiz-Artmann
    • 1
  • Gerd W. Schmid-Schönbein
    • 3
  • Shu Chien
    • 3
  • Christina Maggakis-Kelemen
    • 1
  1. 1.Department of Cellular EngineeringUniversity of Applied Sciences AachenJülichGermany
  2. 2.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of Bioengineering, Whitaker Institute of Biomedical EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations