European Biophysics Journal

, Volume 32, Issue 7, pp 635–643 | Cite as

Fluorescence imaging with two-photon evanescent wave excitation

  • Florian Schapper
  • José Tiago Gonçalves
  • Martin Oheim
Article

Abstract

We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.

Keywords

Evanescent wave excitation Microscopy Non-linear excitation Total internal reflection fluorescence microscopy Two-photon excitation fluorescence 

Abbreviations

1PEF

one-photon excited fluorescence

2PEF

two-photon excited fluorescence

APD

avalanche photo diode

CHO

Chinese hamster ovary

DMEM

Dulbecco's modified Eagle's medium

EGFP

enhanced green fluorescent protein

EW

evanescent wave

FCS

fetal calf serum

GPI

glycosylphosphatidylinositol

TIR

total internal reflection

Notes

Acknowledgements

We thank T. Pons and G. Bunt for help with some experiments, J.-S. Schonn and C. Chapuis for chromaffin cell preparation and B. Babour for comments on the manuscript. Supported by the French Ministry of Research and Technology (M.N.R.E.T.) (ACI "jeunes chercheurs" no. 5242, to M.O.) and a Studienstiftung fellowship to F.S.

References

  1. Artmann K (1948) Berechnung der Seitenversetzung des Totalreflektierten Strahles. Ann Phys 6:87–102Google Scholar
  2. Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30:245–270PubMedGoogle Scholar
  3. Axelrod D (2001a) Selective imaging of surface fluorescence with very high aperture microscopy objectives. J Biomed Opt 6:6–13CrossRefPubMedGoogle Scholar
  4. Axelrod D (2001b) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774CrossRefPubMedGoogle Scholar
  5. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268PubMedGoogle Scholar
  6. Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:1–3Google Scholar
  7. Bicknese S, Perasamy N, Shohet SB, Verkman AS (1993) Cytoplasmic vicosity near the cell plasma membrane: measurement by evanescent field frequency domain microfluorimetry. Biophys J 65:1272–1282PubMedGoogle Scholar
  8. Bloembergen N, Lee CH (1968) Total reflection in second-harmonic generation. Phys Lett 19:835–837CrossRefGoogle Scholar
  9. Bordo VG, Loerke J, Rubahn H-G (2001) Two-photon evanescent-volume wave spectroscopy: a new account of gas-solid dynamics in the boundary layer. Phys Rev Lett 86:1490–1493CrossRefPubMedGoogle Scholar
  10. Caldwell JB (1997) Ultra high NA microscope objective. Opt Photonics News 11:44–46Google Scholar
  11. Chew H, Wang D-S, Kerker M (1979) Elastic scattering of evanescent electromagnetic waves. Appl Opt 18:2679–2687Google Scholar
  12. Darchen F, Zahraoui A, Hammel F, Monteils MP, Tavitian A, Scherman D (1990) Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc Natl Acad Sci USA 87:5692–5696PubMedGoogle Scholar
  13. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357CrossRefPubMedGoogle Scholar
  14. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedGoogle Scholar
  15. Epstein JR, Brian I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36CrossRefGoogle Scholar
  16. Ferguson J, Mau AWH (1972) Absorption studies of acid-base equilibria of dye solutions. Chem Phys Lett 17:543–546CrossRefGoogle Scholar
  17. Funatsu T, Harada Y, Higuchi H, Tokunagag M, Saito K, Ishii Y, Vale RD, Yanagida T (1997) Imaging and nano-manipulation of single biomolecules. Biophys Chem 68:63–72CrossRefPubMedGoogle Scholar
  18. Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 6:333–346Google Scholar
  19. Gryczynski I, Gryczynski Z, Lakowicz JR (1997) Two-photon excitation by the evanescent wave from total internal-reflection. Anal Biochem 247:69–76CrossRefPubMedGoogle Scholar
  20. Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New YorkGoogle Scholar
  21. Huang Z, Thompson NL (1993) Theory for two-photon excitation in pattern photobleaching with evanescent illumination. Biophys Chem 47:241–249CrossRefPubMedGoogle Scholar
  22. Kawano Y, Abe C, Kaneda T, Aono Y, Abe K, Tamura K, Terakawa S (2001) High-numerical aperture objective lenses and optical system improved objective-type total internal reflection fluorescence microscopy. Proc SPIE XX:142–153Google Scholar
  23. Keller P, Toomre D, Diaz E, White J, Simons K (2001) Multicolor imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 3:140–149CrossRefPubMedGoogle Scholar
  24. Kiguchi M, Kato M, Okunaka M, Tnaiguchi Y (1992) New method of measuring second harmonic generation efficiency using powder crystals. Appl Phys Lett 60:1933–1935CrossRefGoogle Scholar
  25. Loerke D, Stühmer W, Oheim M (2002) Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J Neurosci Methods 119:65–73CrossRefPubMedGoogle Scholar
  26. Mertz J (1998) Molecular photodynamics involved in multi-photon excitation fluorescence microscopy. Eur Phys J D 3:53–66CrossRefGoogle Scholar
  27. Mertz J (2000) Radiative absorption, fluorescence and scattering of a classical dipole near a lossless interface: a unified description. J Soc Opt Am B 17:1906–1913Google Scholar
  28. Oheim M, Stühmer W (2000) Tracking individual granules through the actin cortex. Eur Biophys J 29:67–89CrossRefPubMedGoogle Scholar
  29. Oheim M, Loerke D, Stühmer W, Chow RH (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98CrossRefPubMedGoogle Scholar
  30. Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78:2641–2654PubMedGoogle Scholar
  31. Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21:4896–4905CrossRefPubMedGoogle Scholar
  32. Snyder AW, Love JD (1976) Goos-Hänchen shift. Appl Opt 15:236–238Google Scholar
  33. Sonnleitner A, Mannuzzu LM, Terakawa S, Isacoff EY (2002) Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci USA 99:12759–12764CrossRefPubMedGoogle Scholar
  34. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Cell Biol 2:268–275CrossRefGoogle Scholar
  35. Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478PubMedGoogle Scholar
  36. Stout AL, Axelrod D (1989) Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 28:5237–5242Google Scholar
  37. Thompson NL, Lagerholm BC (1997) Total internal reflection fluorescence: applications in cellular biophysics. Curr Opin Biotechnol 8:58–64PubMedGoogle Scholar
  38. Thompson NL, Pearce KH, Hsieh HV (1993) Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur Biopyhs J 22:367–378Google Scholar
  39. Toomre D, Manstein DJ (2001) Lightning up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:296̄–303CrossRefGoogle Scholar
  40. Toriumi M, Masuhara H (1991) Time-resolved total internal reflection fluorescence spectroscopy: principles, instruments and applications. Spectrochim Acta Rev 14:353–377Google Scholar
  41. Tsuboi T, Zhao C, Terakawa S, Rutter GA (2000) Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytic event. Curr Biol 10:1307–1310CrossRefPubMedGoogle Scholar
  42. Tuchin V (2000) Tissue optics. Light scattering methods and instruments for medical diagnosis, vol TT38. SPIE Press, BellinghamGoogle Scholar

Copyright information

© EBSA 2003

Authors and Affiliations

  • Florian Schapper
    • 1
  • José Tiago Gonçalves
    • 1
    • 2
  • Martin Oheim
    • 1
  1. 1.Neurophysiology and New MicroscopiesEcole Supérieure de Physique et Chimie Industrielles (ESPCI)ParisFrance
  2. 2.Molecular Biology of Neuronal SignalsMax-Planck-Institute for Experimental MedicineGöttingenGermany

Personalised recommendations