Advertisement

European Biophysics Journal

, Volume 32, Issue 6, pp 553–562 | Cite as

Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface

  • Elena V. Kudryashova
  • Marcel B. J. Meinders
  • Antonie J. W. G. Visser
  • Arie van Hoek
  • Harmen H. J. de Jongh
Article

Abstract

The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/water interface adopts a characteristic partially unfolded conformation in which the content of the β-sheet is 10% lower compared to that of the protein in bulk solution. Adsorption to the interface leads to considerable changes in the rotational dynamics of ovalbumin. The results indicate that the end-over-end mobility of the ellipsoidal protein becomes substantially restricted. This is likely to reflect a preferential orientation of the protein at the interface. Continuous compression of surface layers of ovalbumin causes local aggregation of the protein, resulting in protein–network formation at the interface. The altered protein–protein interactions contribute to the strong increase in surface pressure observed.

Keywords

Infrared reflection absorption spectroscopy Protein structure Surface compression Surface layer Time-resolved fluorescence anisotropy 

Notes

Acknowledgements

This research has been supported by a VLAG research school grant 2000 and by an INTAS grant YSF 2001/2-0147.

References

  1. Atkinson PJ, Dickinson E, Horne DS, Richardson RM (1995) Neutron reflectivity of adsorbed β-casein and β-lactoglobulin at the air/water Interface. J Chem Soc Faraday Trans 91:2847–2854Google Scholar
  2. Bardwell JA, Dignam MJ (1985) Extensions of the Kramers–Kronig transformation that cover a wide range of practical spectroscopic applications. J Chem Phys 83:5468–5478Google Scholar
  3. Blaudez D, Boucher F, Buffeteau T, Desbat B, Grandbois M, Salesse C (1999) Anisotropic optical constants of bacteriorhodopsin in the mid-infrared: consequence on the determination of α-helix orientation. Appl Spectrosc 53:1299–1304Google Scholar
  4. Brand L, Knutson JR, Davenport L, Beechem JM, Dale RE, Walbridge DG, Kowalczyk AA (1985) Time-resolved fluorescence spectroscopy: some applications of associative behavior to studies of proteins and membranes. In: Bayley PM, Dale RE (eds) Spectroscopy and the dynamics of molecular biological systems. Academic Press, London, pp 259–305Google Scholar
  5. Bross J, Visser AJWG, Engbersen J, Verboom W, Van Hoek A, Reinhoudt D (1995) Flexibility of enzyme suspended in organic solvents probed by time resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility. J Am Chem Soc 117:1637–1650Google Scholar
  6. de Jongh HHJ, Meinders MBJ (2002) Proteins at air/water interfaces studied using external reflection circular dichroism. Spectrochim Acta A 58:3197–3204Google Scholar
  7. Dickinson E, Horne DS, Phipps JS, Richardson RM (1993) A neutron reflectivity study of the adsorption of β-casein at fluid interfaces. Langmuir 9:242–248Google Scholar
  8. Digris AV, Skakun VV, Novikov EG, van Hoek A, Claiborne A, Visser AJWG (1999) Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur Biophys J 28:526–531CrossRefPubMedGoogle Scholar
  9. Dong A, Meyer JD, Brown JL, Manning MC, Carpenter JF (2000) Comparative Fourier transform infrared and circular dichroism spectroscopic analysis of a1-proteinase inhibitor and ovalbumin in aqueous solution. Arch Biochem Biophys 383:148–155CrossRefPubMedGoogle Scholar
  10. Eastoe J, Dalton JS (2000) Dynamic surface tension and adsorption mechanisms of surfactants at the air/water interface. Adv Colloid Interface Sci 85:103–144CrossRefPubMedGoogle Scholar
  11. Elwing H (1998) Protein adsorption and ellipsometry in biomaterial research. Biomaterials 19:397–406CrossRefPubMedGoogle Scholar
  12. Fainerman VB, Miller R (1998) Adsorption and interfacial tension isotherms for proteins. In: Möbius D, Miller R (eds) Protein at liquid interfaces. Elsevier, Amsterdam, pp 51–101Google Scholar
  13. Goormaghtigh E, Cabiaux V, Ruysschaert J-M (1994) In: Hilderson HJ, Ralston GB (eds) Subcellular biochemistry, vol 23: physicochemical methods in the study of biomembranes. Plenum, New York, pp 405–450Google Scholar
  14. Graham DE, Phillips MC (1979) Proteins at liquid interfaces. II. Adsorption isotherms. J Colloid Interface Sci 70:415–426Google Scholar
  15. Graham DE, Phillips MC (1980) Proteins at liquid interfaces. II. Shear properties. J Colloid Interface Sci 76:240–250Google Scholar
  16. Gunning AP, Wilde PJ, Clark DC, Morris VJ, Parker ML (1996) Atomic force microscopy of interfacial protein films. J Colloid Interface Sci 183:600–602CrossRefPubMedGoogle Scholar
  17. Harvey SC, Cheung HC (1977) Fluorescence depolarization studies on the flexibility of myosin rod. Biochemistry 16:5181–5187PubMedGoogle Scholar
  18. Harzallah B, Aguie-Beghin V, Douillard R, Bosi L (1998) A structural study of β-casein adsorbed layers at the air/water interface using X-ray and neutron reflectivity. Int J Biol Macromol 23:73–84PubMedGoogle Scholar
  19. Kopelman R, Tan W (1993) Near field optical microscopy, spectroscopy and chemical sensors. In: Morris MD (ed) Microscopic and spectroscopic imaging of the chemical state. Dekker, New York, pp 227–254Google Scholar
  20. Kudryashova EV, Gladilin AK, Izumrudov VA, van Hoek A, Visser AJWG, Levashov AV (2001) Formation of quasi-regular compact structure of poly(methacrylic acid) upon an interaction with chymotrypsin. Biochim Biophys Acta 1550:129–143CrossRefPubMedGoogle Scholar
  21. Kudryashova EV, Gladilin AK, Levashov AV (2002) Proteins (enzymes) in supramolecular assembles: investigation of structural organization by time-resolved fluorescence anisotropy. Prog Biol Chem (Russ) 42:257–294Google Scholar
  22. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New YorkGoogle Scholar
  23. Meinders MBJ, de Jongh HHJ (2002) Limited conformational change of β-lactoglobulin upon adsorption at the air/water interface. Biopolymers 67:319–322CrossRefPubMedGoogle Scholar
  24. Meinders MBJ, van den Bosch GGM, de Jongh HHJ (2000) IRRAS, a new tool in food science. Trends Food Sci Technol 11:218–225CrossRefGoogle Scholar
  25. Meinders MBJ, van den Bosch GGM, de Jongh HHJ (2001) Molecular properties of proteins at and near the air/water interface from IRRAS spectra of protein solutions. Eur Biophys J 30:256–267CrossRefPubMedGoogle Scholar
  26. Morrison LE, Weber G (1987) Biological membrane modeling with a liquid/liquid interface. Probing mobility and environment with total internal reflection excited fluorescence. Biophys J 52:367–379PubMedGoogle Scholar
  27. Novikov EG, van Hoek A, Visser AJWG, Hofstraat JW (1999) Linear algorithms for stretched exponential decay analysis. Opt Commun 166:189–198CrossRefGoogle Scholar
  28. Pezennec S, Gauthier F, Alonso C, Graner F, Croguennec T, Brule G, Renault A (2000) The protein net electric charge determines the surface rheological properties of ovalbumin adsorbed at the air/water interface. Food Hydrocolloids 14:463–472CrossRefGoogle Scholar
  29. Stein PE, Leslie AGW, Finch JT, Carell RW (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol 221:941–959PubMedGoogle Scholar
  30. Szabo A (1984) Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81:150–167CrossRefGoogle Scholar
  31. Visser AJWG (1997) Time-resolved fluorescence on self-assembly membranes. Curr Opin Colloids Interface Sci 2:27–36Google Scholar
  32. Vos K, van Hoek A, Visser AJWG (1987) Application of a reference deconvolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Eur J Biochem 165:55–63PubMedGoogle Scholar
  33. Wustneck R, Kragel J, Miller R, Fainerman VB, Wilde PJ, Sarker DK, Clark DC (1996) Dynamic surface tension and adsorption properties of β-casein and β-lactoglobulin. Food Hydrocolloids 10:395–405Google Scholar
  34. Yamamoto K, Ishida H (1994) Optical theory applied to infrared spectroscopy. Vibrational Spectrosc 8:1–36CrossRefGoogle Scholar

Copyright information

© EBSA 2003

Authors and Affiliations

  • Elena V. Kudryashova
    • 2
  • Marcel B. J. Meinders
    • 1
    • 3
  • Antonie J. W. G. Visser
    • 4
  • Arie van Hoek
    • 4
  • Harmen H. J. de Jongh
    • 1
    • 5
  1. 1.Wageningen Centre for Food SciencesWageningenThe Netherlands
  2. 2.Division of Chemical Enzymology, Chemistry DepartmentMoscow State UniversityMoscowRussia
  3. 3.Agrotechnological Research InstituteWageningenThe Netherlands
  4. 4.Microspectroscopy Centre, Laboratories of Biochemistry and BiophysicsWageningen UniversityWageningenThe Netherlands
  5. 5.TNO Nutrition and Food Research InstituteZeistThe Netherlands

Personalised recommendations