Advertisement

Microbial Ecology

, Volume 41, Issue 4, pp 360–368 | Cite as

Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8

  • T. Petänen
  • M. Virta
  • M. Karp
  • M. Romantschuk
Article

Abstract

We have generated new sensors for the specific detection and studies of bioavailability of metals by engineering Pseudomonas fluorescens with reporter gene systems. One broad host range mercury (pTPT11) and two arsenite (pTPT21 and pTPT31) sensor plasmids that express metal presence by luminescence phenotype were constructed and transferred into Escherichia coli DH5α and Pseudomonas fluorescens OS8. The maximal induction was reached after 2 h of incubation in metal solutions at room temperature (22°C). In optimized conditions the half maximal velocity of reaction was achieved at acidic pH using a d-luciferin substrate concentration that was nearly sixfold lower for P. fluorescens OS8 than for E. coli DH5α. When using a luciferin concentration (150 μM) that was optimal for E. coli the luminescence declined rapidly in the case of Pseudomonas, for which the substrate level 25 μM gave a stable reading between about 20 min and 3 h. The ability of the strain OS8 to quantitatively detect specific heavy metals in spiked soil and soil extracts is as good, or even better in being a real-time reporter system, than that of a traditional chemical analysis. The Pseudomonas strain used is an isolate from pine rhizosphere in oil and heavy metal contaminated soil. It is also a good humus soil colonizer and is therefore a good candidate for measuring soil heavy metal bioavailability.

Keywords

Heavy Metal Arsenite Pseudomonas Fluorescens Luciferin Graphite Furnace Atomic Absorption Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alloway BJ, Thornton I, Smart GA, Sherlock JC, Quinn MJ (1988) Metal availability. Sci Total Environ 75:41–69PubMedCrossRefGoogle Scholar
  2. 2.
    Beckman Instruments (1982) Beckman Microtox Operating Manual. Microbics, Carlsbad, CA, ppGoogle Scholar
  3. 3.
    Figurski DH, Helsinski DR (1979) Replication of an origincontaining derivate of plasmid RK2 dependent on plasmid function in trans. Proc Natl Acad Sci USA 76:1648–1652PubMedCrossRefGoogle Scholar
  4. 4.
    Ford SR, Chenault KH, Bunton LS, Hampton GJ, McCarthy J, Hall MS, Pangburn SJ, Leach FR (1996) Use of firefly luciferase for ATP measurement: other nucleotides enhance turnover. J Biolumin Chemilumin 11:149–167PubMedCrossRefGoogle Scholar
  5. 5.
    Haapalainen M, Karp M, Metzler MC (1996) Isolation of strong promoters from Clavibacter xyli subsp. cynodontis using a promoter probe plasmid. Biochim Biophys Acta 1305:130–134PubMedGoogle Scholar
  6. 6.
    Inácio MM, Pereira V, Pinto MS (1998) Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85:325–339CrossRefGoogle Scholar
  7. 7.
    Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH release stoichiometry. Environ Sci Technol 33:1179–1184CrossRefGoogle Scholar
  8. 8.
    Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694PubMedGoogle Scholar
  9. 9.
    Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gramnegative bacteria. Gene 70:191–197PubMedCrossRefGoogle Scholar
  10. 10.
    King EO, Ward MK, Raney DE (1954) Two simple media for the demostration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  11. 11.
    Lampinen J, Koivisto L, Wahlsten M, Mäntsälä P, Karp M (1992) Expression of luciferase genes from different origins in Bacillus subtilis. Mol Gen Genet 232:498–504PubMedCrossRefGoogle Scholar
  12. 12.
    Lampinen J, Virta M, Karp M (1995) Comparisation of gram positive and gram negative bacterial strains cloned with luciferase genes in bioluminescence cytotoxicity tests. Environ Toxic Water 10:157–166CrossRefGoogle Scholar
  13. 13.
    Le Grice S, Beuck V, Mous J (1987) Expression of biologically active human T-cell lymphotropic virus type III reverse transcriptase in Bacillus subtilis. Gene 55:95–103PubMedCrossRefGoogle Scholar
  14. 14.
    Loimaranta V, Tenovuo J, Koivisto JL, Karp M (1998) Generation of bioluminescent Streptococcus mutans and its usage in rapid analysis of efficacy of antimicrobial compounds. Antimicrob Agents Chemother 42:1906–1910PubMedGoogle Scholar
  15. 15.
    Ma YB, Uren NC (1998) Transformations of heavy metals added to soil—application of a new sequantial extraction procedure. Geoderma 84:157–168CrossRefGoogle Scholar
  16. 16.
    McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical specification technique and a lux-based biosensor. Environ Toxicol Chem 18:659–663CrossRefGoogle Scholar
  17. 17.
    Misra TK, Brown NL, Fritzinger D, Pridmore R, Barnes W, Silver S (1984) Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: The beginning of the operon including the regulatory region and the first two structural genes. Proc Natl Acad Sci USA 81:5975–5979PubMedCrossRefGoogle Scholar
  18. 18.
    Möller A, Jansson JK (1998) Detection of firefly luciferase-tagged bacteria in environmental samples. In: LaRossa RA (ed) Bioluminescence Methods and Protocols. Methods in Molecular Biology 102. Humana Press, Totowa, NJ, pp 269–284CrossRefGoogle Scholar
  19. 19.
    Norrström AC, Jacks G (1998) Concentration and fraction-ation of heavy metals in roadside soils receiving de-icing salts. Sci Total Environ 218:161–174CrossRefGoogle Scholar
  20. 20.
    Pongratz R (1998) Arsenic specification in environmental samples of contaminated soil. Sci Total Environ 224:133–141CrossRefGoogle Scholar
  21. 21.
    Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensor for monitoring toxic metals. Trends Biotechnol 15:500–506PubMedCrossRefGoogle Scholar
  22. 22.
    Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349CrossRefGoogle Scholar
  23. 23.
    Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res Section A 77:68–72Google Scholar
  24. 24.
    Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:3676–3683PubMedGoogle Scholar
  25. 25.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, ppGoogle Scholar
  26. 26.
    SanFrancisco MJD, Hope CL, Owolabi JB, Tisa LS, Rosen BP (1990) Identification of the metalloregulatory element of plasmid—encoded arsenical resistance operon. Nucl Acid Res 18:619–624Google Scholar
  27. 27.
    Sarand I, Haario H, Jørgensen KS, Romantschuk M (2000) Effect of inoculation of a TOL plasmid containing mycorrhizophere bacterium on development of Scots pine seedlings, their mycorrhizophere and the microbial flora in m-toluateamended soil. FEMS Microbiol Ecol 31:127–141PubMedCrossRefGoogle Scholar
  28. 28.
    Shi WJ, Wu JH, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829PubMedGoogle Scholar
  29. 29.
    Silver S, Ji G, Broer S, Dey SB, Dou X, Rosen BP (1993) Orphan enzyme or patriarch of a new tribe—the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8:637–642PubMedCrossRefGoogle Scholar
  30. 30.
    Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) A review of environmental applications of bioluminescense measurements. Chemosphere 30:2155–2197CrossRefGoogle Scholar
  31. 31.
    Steinnes E (1990) Mercury. In: Alloway BJ (ed) Heavy Metals in Soils. Blackie and Son Ltd, Glasgow and London, pp 222–236Google Scholar
  32. 32.
    Tauriainen S, Karp M, Chang MW, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461PubMedGoogle Scholar
  33. 33.
    Tauriainen S, Virta M, Chang W, Lampinen J, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198PubMedCrossRefGoogle Scholar
  34. 34.
    Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  35. 35.
    Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669CrossRefGoogle Scholar
  36. 36.
    Virta M, Åkerman KEO, Saviranta P, Oker-Blom C, Karp MT (1995) Real-time measurement of cell permeabilization with low-molecular weight membranolytic agents. J Antimicrob Chemother 36:303–315PubMedGoogle Scholar
  37. 37.
    Wood KV, DeLuca M (1987) Photographic detection of luminescence in Escherichia coli containg the gene for firefly luciferase. Anal Chem 161:501–507Google Scholar
  38. 38.
    Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2001

Authors and Affiliations

  • T. Petänen
    • 1
  • M. Virta
    • 2
  • M. Karp
    • 2
  • M. Romantschuk
    • 1
  1. 1.Department of Biosciences, Division of General MicrobiologyUniversity of HelsinkiFinland
  2. 2.Department of BiotechnologyUniversity of TurkuFinland

Personalised recommendations