Microbial Ecology

, Volume 41, Issue 2, pp 140–148 | Cite as

Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection

  • A. ProbanzaEmail author
  • J. L. Mateos
  • J. A. Lucas Garcia
  • B. Ramos
  • M. R. de Felipe
  • F. J. Gutierrez Manero


The effect of co-inoculation with Pisolithus tinctorius and a PGPR belonging to the genus Bacillus (Bacillus licheniformis CECT 5106 and Bacillus pumilus CECT 5105) in enhancing growth of Pinus pinea plants and the changes that occurred in rhizosphere microbial communities and the degree of mycorrhization were evaluated. Both bacterial strains of Bacillus promote the growth of Pinus pinea seedlings, but this biological effect does not imply a synergic effect with mycorrhizal infection. However, the positive response to mycorrhiza in a longer-term experiment it could be expected. The introduction of both inocula causes an lateration in the microbial rhizosphere composition, despite the low levels of inocula that were found at the end of the assay.


Bacillus Mycorrhizal Fungus Ergosterol Bacillus Pumilus Mycorrhizal Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by vesiculararbuscular mycorrhizal fungus. New Phytol 96:555–563CrossRefGoogle Scholar
  2. 2.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917PubMedGoogle Scholar
  3. 3.
    Bowen GD, Theodorou C (1973) Growth of ectomycorrhizal fungi around seeds and roots. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: Their Ecology and Phisiology. Academic Press, New York, pp 107–150Google Scholar
  4. 4.
    Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126CrossRefGoogle Scholar
  5. 5.
    Brown ME (1974) Seed and root bacterization. Annu Rev Phytopatol 12:181–197CrossRefGoogle Scholar
  6. 6.
    Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and supression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathol. 81:954–959Google Scholar
  7. 7.
    Carruthers FJ, Shum-Thomas T, Conner AJ, Mahanty HK (1995) The significance of antibiotic production by Pseudomonas aureofaciens PA 147-2 for biological control of Phytophora megasperma root of asparagus. Plant and Soil. 170:339–344CrossRefGoogle Scholar
  8. 8.
    Cooper R (1959) Bacterial fertilizers in the Soviet Union. Soil Fertil. 22:327–333Google Scholar
  9. 9.
    Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For. Sci. 43:99–112Google Scholar
  10. 10.
    Chanway CP, Nelsson LM, Holl FB (1988) Cultivar specific growth promotion of spring wheat (Triticum aestivum L.) by co-existent Bacillus species. Can. J. Microbiol. 34:925–929CrossRefGoogle Scholar
  11. 11.
    Dowling NJE, Widdel F, White DC (1986) Phospho lipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphatereducers and other sulphide-forming bacteria. J. Gen. Microbiol. 132:1815–1825Google Scholar
  12. 12.
    Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas-fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant and Soil. 138:169–176CrossRefGoogle Scholar
  13. 13.
    Duponnois R, Garbaye J, Bouchard D, Churin JL (1993) The fungus specificity of mycorrhization helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrrhizal inoculation of bare-root Douglas-fir planting stocks with Laccaria laccata. Plant and Soil. 157:257–262CrossRefGoogle Scholar
  14. 14.
    Ekbald A, Wallander H, Näsholm T (1998) Chitin and ergosterol combined to measure total living fungal biomass in ectomycorrhizas. New Phytol. 138:143–149CrossRefGoogle Scholar
  15. 15.
    Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil. 159:123–132Google Scholar
  16. 16.
    Freitas JR, Gupta VVSR, Germida JJ (1993) Influence of Pseudomonas syringae R25 and P. putida on the growth and N2 fixation (acetilene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol. Fertil. Soils. 16:215–220CrossRefGoogle Scholar
  17. 17.
    Frey B, Buser H-R, Schüepp H (1992) Identification of ergosterol in vesicular-arbuscular mycorrhizae. Biol. Fertil. Soils. 13:229–234CrossRefGoogle Scholar
  18. 18.
    Frey-Klett P, Curin J-L, Pierrat J-C, Gatbaye J (1999) Doseeffect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil. Biol. Biochem. 31:1555–1562 DOI: 10.1016/S0038-0717(99)00079-6CrossRefGoogle Scholar
  19. 19.
    Frey-Klett P, Pierrat J-C, Gatbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ecyomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl. Environ. Microbiol. 63 (1):139–144PubMedGoogle Scholar
  20. 20.
    Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospho lipid fatty acid analysis. Soil Biol. Biochem. 25:723–730CrossRefGoogle Scholar
  21. 21.
    Garbaye J, Bowen GD (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can. J. For. Res. 17:941–943Google Scholar
  22. 22.
    Garbaye J, Bowen GD (1989) Stimulation of ectomicorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol. 112:383–388CrossRefGoogle Scholar
  23. 23.
    Garbaye J (1994) Helper bacteria: a new dimension to mycorrhizal symbiosis. New Phytol. 128:197–210CrossRefGoogle Scholar
  24. 24.
    Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis. 14:335–344Google Scholar
  25. 25.
    Gaskins MH, Albrech SL, Hubbell DH (1985) Rhizosphere bacteria and their use to increase plant productivity: A review. Agric. Ecosyst. Environ. 12:99–116CrossRefGoogle Scholar
  26. 26.
    Gutiérrez Mañero FJ, Acero N, Lucas JA, Probanza A (1996) The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. II. Characterization and biological assays of metabolites from growth promoting and growth inhibiting bacteria. Plant and Soil. 182:67–74CrossRefGoogle Scholar
  27. 27.
    Hartman JH (1967) Modern factor analysis. Univ. Chicago Press, Chicago, pp 133Google Scholar
  28. 28.
    Holl FB, Chaneway CP, Turkingon R, Radley R (1988) Growth response of crested wheatgrass (Agropyron cirstatum L.), white clover (Trifolium repens L.) to inoculation with Bacillus polymixa. Soil Biol. Biochem. 20:19–24CrossRefGoogle Scholar
  29. 29.
    Ingleby ER, Molina R (1991) Interactions among mycorrhizal fungi, rhizosphere organisms and plants. In: Barbosa P, Krischik VA, Jones GC (eds) Microbial Mediation of plantherbivore interactions. John Wiley and Sons, New York, pp 169–197Google Scholar
  30. 30.
    Kloepper JW (1993) Plant-growth promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker, New York, pp 255–274Google Scholar
  31. 31.
    Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathol. 70:1078–1082CrossRefGoogle Scholar
  32. 32.
    McAfee BJ, Fortin JA (1988) Comparative effects of the soil microflora on ectomycorrhizal inoculation of conifer seedlings. New Phytol. 108:443–449CrossRefGoogle Scholar
  33. 33.
    Meyer JR, Linderman RG (1986) Selective influence of populations of rhizosphere bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil. Biol. Biochem. 18:191–196CrossRefGoogle Scholar
  34. 34.
    Mishustin EN, Naumova AN (1962) Bacterial fertilizers, their effectiveness and mode of action. Microbiologia 31:543–555Google Scholar
  35. 35.
    Noller EC, Hartsell SE (1961) Bacteriologysis of Enterobacteriaceae. J. Bacteriol. 81:492–499PubMedGoogle Scholar
  36. 36.
    Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can. J. Microbiol. 43:1017–1035CrossRefGoogle Scholar
  37. 37.
    Nylund J-E, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomas. In: Norris JR, Read DJ, Varma AK (eds) Methods in Microbiology: Techniques for the study of Mycorrhiza Vol 24. Academic Press, London, pp 77–88Google Scholar
  38. 38.
    O'Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In: Ratledge C, Willkinson SG (eds) Microbial lipids. Academic Press, London. vol. 1. pp 117–185Google Scholar
  39. 39.
    Okon Y, Hadar YA (1987) Microbial inoculants as crop yield enahacers. CRC Crit. Rev. Biotechnol. 6:61–85Google Scholar
  40. 40.
    Probanza A, Lucas JA, Acero N, Gutierrez Mañero FJ (1996) The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant and soil. 182:59–66CrossRefGoogle Scholar
  41. 41.
    Regvar M, Gogala N (1996) Changes in root growth patterns of (Picea abies) spruce roots by inoculation with an ectmycorrhizal fungus Pisolithus tinctorius and jasmonic acid treatment. Trees. 10:410–414 DOI: 10.1007/s004680050050Google Scholar
  42. 42.
    Salmanovicz B, Nylund J-E (1988) High preformance liquid chromatography determination of ergosterol as a measure of ectomycorrhiza infection in scots pine. European Journal of Forest Pathology 18:291–298Google Scholar
  43. 43.
    Schippers B, Scheffer RJ, Lugtenberg BJJ, Weisbeck PJ (1995) Biocoating of seeds with plant growth-promoting rhizobacteria to improve plant establishment. Outlook on Agriculture 24:179–185Google Scholar
  44. 44.
    Selvadurai E, Brown AE, Hamilton JTG (1991) Production of indole-3-acetic acid analogues by strains of Bacillus cereus in relation to their influence on seedling development. Soil Biol. Biochem. 23 (4):410–403CrossRefGoogle Scholar
  45. 45.
    Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can. J. Microbiol. 41:707–713CrossRefGoogle Scholar
  46. 46.
    Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77:433–441 DOI: 10.1006/anbo.1996.0053CrossRefGoogle Scholar
  47. 47.
    Shishido M, Petresen DJ, Massicotte HB, Chanway CP (1996) Pine and spruce seedlings growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strain. FEMS Microb. Ecol. 21:109–119CrossRefGoogle Scholar
  48. 48.
    Wiehe W, Höflich G (1995) Establishment of plant growth promoting bacteria in the rhizosphere of subsequent plants after harvest of the inoculated precrops. Microbio. Res. 150:331–336Google Scholar

Copyright information

© Springer-Verlag New York Inc 2001

Authors and Affiliations

  • A. Probanza
    • 1
    Email author
  • J. L. Mateos
    • 1
  • J. A. Lucas Garcia
    • 1
  • B. Ramos
    • 1
  • M. R. de Felipe
    • 2
  • F. J. Gutierrez Manero
    • 1
  1. 1.Dpto. de Biología, Facultad de Ciencias Experimentales y TécnicasUniversidad San Pablo CEUMadridSpain
  2. 2.Centro de Ciencias MedioambientalesCSICMadridSpain

Personalised recommendations