Skip to main content
Log in

Arachis hypogaea L. from Acid Soils of Nanyang (China) Is Frequently Associated with Bradyrhizobium guangdongense and Occasionally with Bradyrhizobium ottawaense or Three Bradyrhizobium Genospecies

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR–RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hammons RO (1994) The origin and history of the groundnut. In: Smartt J (ed) The groundnut crop. Springer, Netherlands, pp 24–42. https://doi.org/10.1007/978-94-011-0733-4_2

  2. Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971. https://doi.org/10.3732/ajb.94.12.1963

    Article  PubMed  Google Scholar 

  3. Okito A, Alves BJR, Urquiaga S, Boddey RM (2004) Nitrogen fixation by groundnut and velvet bean and residual benefit to a subsequent maize crop. Pesqui Agropecu Bras 39:1183–1190. https://doi.org/10.1590/s0100-204x2004001200004

    Article  Google Scholar 

  4. Toomsan B, Mcdonagh JF, Limpinuntana V, Giller KE (1995) Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand. Plant Soil 175:45–56. https://doi.org/10.1007/BF02413009

    Article  CAS  Google Scholar 

  5. Andrews M, Andrews ME (2017) Specificity in legume rhizobia symbioses. Int J Mol Sci 18:705

    Article  Google Scholar 

  6. Dos Santos JWM, da Silva JF, Ferreira TDD, Dias MAM, Fraiz ACR, Escobar IEC, dos Santos RC, de Lima LM, Morgante CV, Fernandes PI (2017) Molecular and symbiotic characterization of peanut bradyrhizobia from the semi-arid region of Brazil. Appl Soil Ecol 121:177–184. https://doi.org/10.1016/j.apsoil.2017.09.033

    Article  Google Scholar 

  7. Zazou AZ, Fonceka D, Fall S, Fabra A, Ibanez F, Pignoly S, Diouf A, Toure O, Faye MN, Hocher V, Diouf D, Svistoonoff S (2018) Genetic diversity and symbiotic efficiency of rhizobial strains isolated from nodules of peanut (Arachis hypogaea L.) in Senegal. Agric Ecosyst Environ 265:384–391

    Article  Google Scholar 

  8. FAOSTAT (2021) Food and Agriculture Organisation of the United Nations. www.fao.org/faostat. Accessed 17 May 2021

  9. Yang JK, Zhou JC (2008) Diversity, phylogeny and host specificity of soybean and peanut bradyrhizobia. Biol Fertil Soils 44:843–851. https://doi.org/10.1007/s00374-008-0269-3

    Article  Google Scholar 

  10. Chen J, Hu M, Ma H, Wang Y, Wang ET, Zhou Z, Gu J (2016) Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst Appl Microbiol 39:418–427. https://doi.org/10.1016/j.syapm.2016.06.002

    Article  PubMed  Google Scholar 

  11. Shao S, Chen M, Liu W, Hu X, Li Y (2020) Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst Appl Microbiol 43:126101. https://doi.org/10.1016/j.syapm.2020.126101

    Article  CAS  PubMed  Google Scholar 

  12. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX (2011) Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61:2496–2502. https://doi.org/10.1099/ijs.0.027110-0

    Article  PubMed  Google Scholar 

  13. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX (2013) Bradyrhizobium arachidis sp. nov., isolated from effective nodules Arachis hypogaea grown in China. Syst Appl Microbiol 36:101–105. https://doi.org/10.1016/j.syapm.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  14. Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX (2015) Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 65:4655–4661. https://doi.org/10.1099/ijsem.0.000629

    Article  CAS  PubMed  Google Scholar 

  15. Li YH, Wang R, Sui XH, Wang ET, Zhang XX, Tian CF, Chen WF, Chen WX (2019) Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 42:11. https://doi.org/10.1016/j.syapm.2019.126002

    Article  CAS  Google Scholar 

  16. Liao BS (2020) A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci 42:161–166. https://doi.org/10.19802/j.issn.1007-9084.2020115

    Article  CAS  Google Scholar 

  17. Zhang JJ, Lou K, Jin X, Mao PH, Wang ET, Tian CF, Sui XH, Chen WF, Chen WX (2012) Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil 353:123–134. https://doi.org/10.1007/s11104-011-1014-5

    Article  CAS  Google Scholar 

  18. Han LL, Wang ET, Han TX, Liu J, Sui XH, Chen WF, Chen WX (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305. https://doi.org/10.1007/s11104-009-9956-6

    Article  CAS  Google Scholar 

  19. Zhang JJ, Shang YM, Wang ET, Chen WF, de Lajudie P, Li BY, Guo C, Yang X, Zheng JQ, Liu CZ (2018) Mesorhizobium jarvisii sv. astragali as predominant microsymbiont for Astragalus sinicus L. in acidic soils, Xinyang, China. Plant Soil 433:201–212. https://doi.org/10.1007/s11104-018-3830-3

    Article  CAS  Google Scholar 

  20. Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180. https://doi.org/10.1016/s0168-1656(01)00338-8

    Article  CAS  PubMed  Google Scholar 

  21. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036. https://doi.org/10.1128/aem.62.6.2029-2036.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63. https://doi.org/10.1128/aem.60.1.56-63.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

  24. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14:817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  Google Scholar 

  25. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716. https://doi.org/10.1016/j.syapm.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  26. Vinuesa P, Silva C, Werner D, Martinez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. https://doi.org/10.1016/j.ympev.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  27. Haukka K, Lindstrom K, Young JP (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426. https://doi.org/10.2307/1140518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laguerre G, Nour SM, Macheret V, Sanjuan J, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiol 147:981–993. https://doi.org/10.1099/00221287-147-4-981

    Article  CAS  Google Scholar 

  29. Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press. https://doi.org/10.1017/CBO9780511615146

  30. Yu X, Cloutier S, Tambong JT, Bromfield ESP (2014) Bradyrhizobium ottowaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 64:3202–3207

    Article  CAS  Google Scholar 

  31. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterisation of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    CAS  PubMed  Google Scholar 

  32. De Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Pulawska J, Steenkamp E, Stępkowski T, Tian C-F, Vinuesa P, Wei G, Willems A, Zilli J, Young P (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69:1852–1863

    Article  Google Scholar 

  33. Andrews M, De Meyer S, James EK, Stepkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 9:321

    Article  Google Scholar 

Download references

Funding

This work was financed by the Project for Extramural Scientists of State Key Laboratory of Agrobiotechnology (Project No. 2021SKLAB6-8) from JJ Zhang and project of Sabbatical Year SIP20200726 authorized by IPN, Mexico from ET Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Zhang or Mitchell Andrews.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 171 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Peng, S., Li, S. et al. Arachis hypogaea L. from Acid Soils of Nanyang (China) Is Frequently Associated with Bradyrhizobium guangdongense and Occasionally with Bradyrhizobium ottawaense or Three Bradyrhizobium Genospecies. Microb Ecol 84, 556–564 (2022). https://doi.org/10.1007/s00248-021-01852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01852-2

Keywords

Navigation