Skip to main content
Log in

The Light-to-Nutrient Ratio in Alpine Lakes: Different Scenarios of Bacterial Nutrient Limitation and Community Structure in Lakes Above and Below the Treeline

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The light-to-nutrient hypothesis proposes that under high light-to-nutrient conditions, bacteria tend to be limited by phosphorus (P), while under relatively low light-to-nutrient conditions, bacteria are likely driven towards carbon (C) limitation. Exploring whether this light-to-nutrient hypothesis is fitting for alpine lakes has profound implications for predicting the impacts of climatic and environmental changes on the structures and processes of aquatic ecosystems in climate-sensitive regions. We investigated the environmental conditions and bacterioplankton community compositions of 15 high-elevation lakes (7 above and 8 below treeline). High light-to-nutrient conditions (denoted by the reciprocal value of the attenuation coefficient (1/K) to total phosphorus (TP)), high chlorophyll a (Chl a) concentrations, low TP concentrations and low ratios of the dissolved organic carbon concentration to the dissolved total nitrogen concentration (DOC:DTN) were detected in above-treeline lakes. Significant positive correlations between the bacterioplankton community compositions with 1/K:TP ratios and Chl a concentrations indicated that not only high light energy but also nutrient competition between phytoplankton and bacteria could induce P limitation for bacteria. In contrast, low light-to-nutrient conditions and high allochthonous DOC input in below-treeline lakes lessen P limitation and C limitation. The most abundant genus, Polynucleobacter, was significantly enriched, and more diverse oligotypes of Polynucleobacter operational taxonomic units were identified in the below-treeline lakes, indicating the divergence of niche adaptations among Polynucleobacter oligotypes. The discrepancies in the light-to-P ratio and the components of organic matter between the above-treeline and below-treeline lakes have important implications for the nutrient limitation of bacterioplankton and their community compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All bacterial 16S rRNA gene sequence data produced during the study were deposited in the NCBI Sequence Read Archive database under Bioproject PRJNA637707 via the accession numbers SRX8488122–SRX8488157.

References

  1. Smol JP (2009) Pollution of lakes and rivers: a paleoenvironmental perspective. John Wiley & Sons

    Google Scholar 

  2. Sterner RW, Elser JJ, Fee EJ, Guildford SJ et al (1997) The light : nutrient ratio in lakes: the balance of energy and material affects ecosystem structure and process. Am Naturalist 150:663–684. https://doi.org/10.1086/286088

    Article  CAS  Google Scholar 

  3. Obernosterer I, Herndl GJ (1995) Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N : P ratio. Mar Ecol Prog Ser 116:247–257. https://doi.org/10.3354/meps116247

    Article  Google Scholar 

  4. Chrzanowski TH, Grover JP (2001) The light : nutrient ratio in lakes: a test of hypothesized trends in bacterial nutrient limitation. Ecol Lett 4:453–457. https://doi.org/10.1046/j.1461-0248.2001.00244.x

    Article  Google Scholar 

  5. Cole JJ, Caraco NF, Kling GW et al (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570. https://doi.org/10.1002/lob.10098

    Article  CAS  PubMed  Google Scholar 

  6. Jansson M, Bergström AK, Blomqvist P et al (1999) Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örträsket. Arch Hydrobiol 144:409–428

    Article  CAS  Google Scholar 

  7. Guillemette F, Bianchi TS, Spencer RG (2017) Old before your time: ancient carbon incorporation in contemporary aquatic foodwebs. Limnol Oceanogr 62:1682–1700. https://doi.org/10.1002/lno.10525

    Article  CAS  Google Scholar 

  8. Wookey PA, Aerts R, Bardgett RD et al (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15:1153–1172. https://doi.org/10.1111/j.1365-2486.2008.01801.x

    Article  Google Scholar 

  9. Musselman RC, Slauson WL (2004) Water chemistry of high elevation Colorado wilderness lakes. Biogeochemistry 71:387–414. https://doi.org/10.1007/s10533-004-0369-6

    Article  CAS  Google Scholar 

  10. Elser JJ, Andersen T, Baron JS et al (2009) Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837. https://doi.org/10.1126/science.1176199

    Article  CAS  PubMed  Google Scholar 

  11. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. https://doi.org/10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  12. Su YL, Chen FZ, Liu ZW (2015) Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree linetree line: insights into sources of CDOM. Photochem Photobiol Sci 14:1047–1062. https://doi.org/10.1039/c4pp00478g

    Article  CAS  PubMed  Google Scholar 

  13. Zhang YL, Zhang EL, Yin Y et al (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol Oceanogr 55:2645–2659. https://doi.org/10.4319/lo.2010.55.6.2645

    Article  CAS  Google Scholar 

  14. McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48. https://doi.org/10.4319/lo.2001.46.1.0038

    Article  CAS  Google Scholar 

  15. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:1–6. https://doi.org/10.4319/lom.2008.6.572

    Article  Google Scholar 

  16. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. https://doi.org/10.1021/es0506962

    Article  CAS  PubMed  Google Scholar 

  17. Porter KG, Feig YS (1980) The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  18. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinfromatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  23. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM et al (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eren AM, L. Maignien WJ, Sul LG, et al (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119. https://doi.org/10.1111/2041-210X.12114

    Article  PubMed Central  Google Scholar 

  27. Parks DH, Tyson GW, Hugenholtz P et al (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA

    Google Scholar 

  29. Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  30. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. https://doi.org/10.1016/0304-4203(95)00062-3

    Article  CAS  Google Scholar 

  31. Walker SA, Amon RMW, Stedmon C et al (2009) The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. J Geophys Res Biogeosci 114 (G4). https://doi.org/10.1029/2009JG000990

  32. Guéguen C, Cuss CW, Cassels CJ et al (2014) Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea. J Geophys Res Oceans 119:2034–2047. https://doi.org/10.1002/2013JC009173

    Article  CAS  Google Scholar 

  33. Chen M, Kim SH, Jung HJ et al (2017) Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications. Water Res 121:150–161. https://doi.org/10.1016/j.watres.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  34. Stedmon CA, Thomas DN, Granskog M et al (2007) Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Environ Sci Technol 41:7273–7279. https://doi.org/10.1021/es071210f

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita Y, Scinto LJ, Maie N et al (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems 13:1006–1019. https://doi.org/10.1007/s10021-010-9370-1

    Article  CAS  Google Scholar 

  36. Yamashita Y, Boyer JN, Jaffé R (2013) Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Cont Shelf Res 66:136–144. https://doi.org/10.1016/j.csr.2013.06.010

    Article  Google Scholar 

  37. Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microh Ecology 10:15–27. https://doi.org/10.3354/ame010015

    Article  Google Scholar 

  38. Currie DL (1990) Large-scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol Oceanogr 35:1437–1455. https://doi.org/10.4319/lo.1990.35.7.1437

    Article  Google Scholar 

  39. Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254. https://doi.org/10.1128/AEM.69.9.5248-5254.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hahn MW, Koll U, Jezberova J et al (2015) Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol 17:829–840. https://doi.org/10.1111/1462-2920.12532

    Article  CAS  PubMed  Google Scholar 

  41. Hahn MW, Huemer A, Pitt A et al (2021) Opening a next-generation black box: ecological trends for hundreds of species-like taxa uncovered within a single bacterial >99% 16S rRNA operational taxonomic unit. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13444

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jezberová J, Jezbera J, Brandt U et al (2010) Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogeneous 2000 km area. Environ Microbiol 12:658–669. https://doi.org/10.1111/j.1462-2920.2009.02106.x

    Article  PubMed  Google Scholar 

  43. Jezbera J, Jezberova J, Brandt U et al (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931. https://doi.org/10.1111/j.1462-2920.2010.02396.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jezbera J, Jezberova J, Koll U et al (2012) Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 81:467–479. https://doi.org/10.1111/j.1574-6941.2012.01372.x

    Article  CAS  PubMed  Google Scholar 

  45. Hahn MW, Jezberova J, Koll U et al (2016) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 10:1642–1655. https://doi.org/10.1038/ismej.2015.237

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sundh I (1992) Biochemical-composition of dissolved organic-carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58:2938–2947. https://doi.org/10.1016/0378-1097(92)90407-F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horňák K, Kasalický V, Šimek K et al (2017) Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol 19:4519–4535. https://doi.org/10.1111/1462-2920.13900

    Article  CAS  PubMed  Google Scholar 

  48. Nuy JK, Hoetzinger M, Hahn MW et al (2020) Ecological differentiation in two major freshwater bacterial taxa along environmental gradients. Front Microbiol 11:154. https://doi.org/10.3389/fmicb.2020.00154

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hahn MW, Scheuerl T, Jezberova J et al (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS ONE 7:e32772. https://doi.org/10.1371/journal.pone.0032772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu J (2010) Measuring the meltdown. Nature 468:141–142. https://doi.org/10.1038/468141a

    Article  CAS  PubMed  Google Scholar 

  51. Li ZG (2014) Glacier and lake changes across the Tibetan plateau during the past 50 years of climate change. J Resour Ecol 5:123–131. https://doi.org/10.5814/j.issn.1674-764x.2014.02.004

    Article  Google Scholar 

  52. Hood E, Fellman J, Spencer RGM et al (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047. https://doi.org/10.1038/nature08580

    Article  CAS  PubMed  Google Scholar 

  53. Zheng X, Fu C, Xu X et al (2002) The Asian nitrogen cycle case study. Ambio 31:79–87. https://doi.org/10.1579/0044-7447-31.2.79

    Article  PubMed  Google Scholar 

  54. Bergström A, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–643. https://doi.org/10.1111/j.1365-2486.2006.01129.x

    Article  Google Scholar 

  55. Harsch MA, Hulme PE, McGlone MS et al (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge W. Zhen, X. F. Zhao and J. L. Yu for field assistance.

Funding

National Natural Science Foundation of China (31971475, 31722008, 31670461) supported this publication.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. did the field sampling, physiochemical data analysis and wrote the draft manuscript. Y.D. did the cDOM measurement and data interpretation. P.X. did the microbial data analysis and modified the manuscript.

Corresponding author

Correspondence to Peng Xing.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4679 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Du, Y. & Xing, P. The Light-to-Nutrient Ratio in Alpine Lakes: Different Scenarios of Bacterial Nutrient Limitation and Community Structure in Lakes Above and Below the Treeline. Microb Ecol 83, 837–849 (2022). https://doi.org/10.1007/s00248-021-01834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01834-4

Keywords

Navigation