Skip to main content
Log in

(My Microbiome) Would Walk 10,000 miles: Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Host-associated microbes facilitate diverse biotic and abiotic interactions between hosts and their environments. Experimental alterations of host-associated microbial communities frequently decrease host fitness, yet much less is known about if and how host-microbiome interactions are altered by natural perturbations, such as introduction events. Here, we begin to assess this question in Onthophagus dung beetles, a species-rich and geographically widely distributed genus whose members rely on vertically transmitted microbiota to support normal development. Specifically, we investigated to what extent microbiome community membership shifts during host introduction events and the relative significance of ancestral associations and novel environmental conditions in the structuring of microbial communities of introduced host species. Our results demonstrate that both evolutionary history and local environmental forces structure the microbial communities of these animals, but that their relative importance is shaped by the specific circumstances that characterize individual introduction events. Furthermore, we identify microbial taxa such as Dysgonomonas that may constitute members of the core Onthophagus microbiome regardless of host population or species, but also Wolbachia which associates with Onthophagus beetles in a species or even population-specific manner. We discuss the implications of our results for our understanding of the evolutionary ecology of symbiosis in dung beetles and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All 16S rRNA sequences are accessible on the NIH Sequence Read Archive (SRA) under the accession number PRJNA599403.

References

  1. Foray V, Perez-Jimenez MM, Fattouh N, Landmann F (2018) Wolbachia control stem cell behavior and stimulate germline proliferation in filarial nematodes. Dev Cell 45(2):198–211

    Article  CAS  Google Scholar 

  2. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  CAS  Google Scholar 

  3. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238

    Article  CAS  Google Scholar 

  4. McFall-Ngai MJ (2014) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194

    Article  CAS  Google Scholar 

  5. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail–like structures. Science 343(6170):529–533

    Article  CAS  Google Scholar 

  6. Sneed JM, Sharp KH, Ritchie KB, Paul VJ (2014) The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proceedings of the Royal Society B: Biological Sciences 281(1786):20133086

    Article  CAS  Google Scholar 

  7. Whalan S, Webster NS (2014) Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci Rep 4:4072

    Article  CAS  Google Scholar 

  8. Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc R Soc Lond B Biol Sci 273(1590):1079–1084

    Article  CAS  Google Scholar 

  9. Emelianoff, V., Chapuis, E., le Brun, N., Chiral, M., Moulia, C., and Ferdy, J. B. (2008) A survival- reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evolution, 932-942

  10. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM et al (2019) The microbiota regulate neuronal function and fear extinction learning. Nature 574(7779):543–548

    Article  CAS  Google Scholar 

  11. Vuong, H. E., Yano, J. M., Fung, T. C., & Hsiao, E. Y. (2017). The microbiome and host behavior. Annu Rev Neurosci, 40(1), 21–49. https://doi.org/10.1146/annurev-neuro-072116-031347

  12. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23(1):38–47. https://doi.org/10.1111/j.1365-2435.2008.01442.x

    Article  Google Scholar 

  13. Gilbert, S. F. (2019). Developmental symbiosis facilitates the multiple origins of herbivory. Evolution & development, e12291

  14. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110(9):3229–3236. https://doi.org/10.1073/pnas.1218525110

    Article  PubMed  Google Scholar 

  15. Morimoto J, Simpson SJ, Ponton F (2017) Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster. Biol Lett 13:20160966. https://doi.org/10.1098/rsbl.2016.0966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rosenberg, E., & Zilber-Rosenberg, I. (2013). The hologenome concept: human, animal and plant microbiota. In The Hologenome Concept: Human, Animal and Plant Microbiota https://doi.org/10.1007/978-3-319-04241-1

  17. Parker ES, Dury GJ, Moczek AP (2018) Transgenerational developmental effects of species-specific, maternally transmitted microbiota in Onthophagus dung beetles. Ecological Entomology. https://doi.org/10.1111/een.12703

  18. Schwab DB, Riggs HE, Newton ILG, Moczek AP (2016) Developmental and ecological benefits of the maternally transmitted microbiota in a dung beetle. Am Nat 188(6):000–000. https://doi.org/10.1086/688926

    Article  CAS  Google Scholar 

  19. Tarasov SI, Kabakov ON (2010) Two new species of Onthophagus (Coleoptera: Scarabaeidae) from Indochina, with a discussion of some problems with the classification of Serrophorus and similar subgenera. Zootaxa 2344:17–28

    Article  Google Scholar 

  20. Frank K, Brückner A, Hilpert A, Heethoff M, Blüthgen N (2017) Nutrient quality of vertebrate dung as a diet for dung beetles. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-12265-y

    Article  CAS  Google Scholar 

  21. Holter P (2016) Herbivore dung as food for dung beetles: elementary coprology for entomologists. Ecological Entomology 41(4):367–377. https://doi.org/10.1111/een.12316

    Article  Google Scholar 

  22. Goidanich, A., & Malan, C. E. (1962). Sulla fonte di alimentazione e sulla microflora aerobica del nido pedotrofico e dell'apparato digerente delle larve di scarabei coprogagi: (Coleoptera scarabaeidae)

  23. Rougon D, Rougon C, Levieux J, Trichet J (1990) Variations in the amino-acid content in zebu dung in the Sahel during nesting by dung-beetles (Coleoptera, Scarabaeidae). Soil Biol Biochem 22(2):217–223. https://doi.org/10.1016/0038-0717(90)90090-M

    Article  Google Scholar 

  24. Estes, A. M., Hearn, D. J., Snell-Rood, E. C., Feindler, M., Feeser, K., Abebe, T., Dunning Hotopp J.C. Moczek, A. P. (2013). Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS One, 8(11), 1–15. https://doi.org/10.1371/journal.pone.0079061

  25. Shukla SP, Sanders JG, Byrne MJ, Pierce NE (2016) Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol Ecol 25(24):6092–6106. https://doi.org/10.1111/mec.13901

    Article  PubMed  CAS  Google Scholar 

  26. Edwards, P. (2007) Introduced dung beetles in Australia 1967-2007, 1–66

  27. Silva DP, Vilela B, Buzatto BA, Moczek AP, Hortal J (2016) Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol Invasions 18(11):3137–3148. https://doi.org/10.1007/s10530-016-1204-4

    Article  Google Scholar 

  28. Vulinec K, Eudy SP (1993) A southern range extension for the introduced dung beetle Onthophagus taurus Schreber (Coleoptera: Scarabaeidae). Coleopt Bull 47(2):129–130

    Google Scholar 

  29. Floate KD, Watson DW, Weiss RM, Olfert O (2017) Bioclimatic analyses for the distributions of Onthophagus nuchicornis, Onthophagus taurus, and Digitonthophagus gazella (Coleoptera: Scarabaeidae) in North America. Can Entomol 149(4):504–524. https://doi.org/10.4039/tce.2017.20

    Article  Google Scholar 

  30. De Vrieze J, Regueiro L, Props R, Vilchez-Vargas R, Jáuregui R, Pieper DH et al (2016) Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnology for Biofuels 9:1–13. https://doi.org/10.1186/s13068-016-0652-5

    Article  CAS  Google Scholar 

  31. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  33. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  CAS  Google Scholar 

  34. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 -- approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. R Core Team (2013). R: A language and environment for statistical computing

  36. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  Google Scholar 

  37. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Stevens, M. H. H. (2018). vegan: Community Ecology Package. R package version 2.5–2. 2018

  38. Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer

  39. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352

    Article  CAS  Google Scholar 

  40. Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW (2018) Is host filtering the main driver of phylosymbiosis across the tree of life? MSystems 3(5):e00097–e00018. https://doi.org/10.1128/msystems.00097-18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR (2016) Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol 14(11):e2000225. https://doi.org/10.1371/journal.pbio.2000225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation. Science 466(August):667–669. https://doi.org/10.1126/science.1240659

    Article  CAS  Google Scholar 

  43. Kohl KD, Dearing MD, Bordenstein SR (2018) Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract. Mol Ecol 27(8):1874–1883. https://doi.org/10.1111/mec.14460

    Article  PubMed  Google Scholar 

  44. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm EJ (2017) Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun 8. https://doi.org/10.1038/ncomms14319

  45. Hajek AE, Nielsen C, Kepler RM, Long SJ, Castrillo L (2013) Fidelity among Sirex woodwasps and their fungal symbionts. Microb Ecol 65(3):753–762. https://doi.org/10.1007/s00248-013-0218-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wooding AL, Wingfield MJ, Hurley BP, Garnas JR, De Groot P, Slippers B (2013) Lack of fidelity revealed in an insect-fungal mutualism after invasion. Biol Lett 9(4):20130342. https://doi.org/10.1098/rsbl.2013.0342

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cheng, D., Chen, S., Huang, Y., Pierce, N. E., Id, M. R., Yang, F., … Id, Y. X. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathog, 1–22. Retrieved from https://doi.org/10.1371/journal.ppat.1007942

  48. Mueller, U. G., Mikheyev, A. S., Hong, E., Sen, R., Warren, D. L., Solomon, S. E., Ishak H.D., Cooper M., Miller J.L., Shaffer K.A. Juenger, T. E. (2011). Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proceedings of the National Academy of Sciences, 108(10), 4053–4056. https://doi.org/10.1073/pnas.1015806108

  49. Gundale MJ, Almeida JP, Wallander H, Wardle DA, Kardol P, Nilsson MC et al (2016) Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. J Ecol 104(5):1219–1232. https://doi.org/10.1111/1365-2745.12595

    Article  Google Scholar 

  50. Monteith, G., & Kenyon, T. (2011). Report on a survey of dung beetles (Coleoptera: Scarabaeinae) from the Moggill Creek Catchment Brisbane. Brisbane

  51. Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS One 8(7):e69184

    Article  CAS  Google Scholar 

  52. Shinzato N, Muramatsu M, Watanabe Y, Matsui T (2005) Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus. Zool Sci 22(8):917–923

    Article  CAS  Google Scholar 

  53. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?–a statistical analysis of current data. FEMS microbiology letters 281(2):215–220

    Article  CAS  Google Scholar 

  54. Werren, J. H., & Windsor, D. M. (2000). Wolbachia infection frequencies in insects: evidence of a global equilibrium?. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1450), 1277–1285

  55. Newton, I. L., & Rice, D. W. (2019). The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist?. J Bacteriol

  56. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702–702

    Article  CAS  Google Scholar 

  57. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751. https://doi.org/10.1038/nrmicro1969

    Article  PubMed  CAS  Google Scholar 

  58. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51(3):294–301. https://doi.org/10.1007/s00248-006-9036-x

    Article  PubMed  CAS  Google Scholar 

  59. Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y et al (2014) Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci 111(34):12498–12503

    Article  CAS  Google Scholar 

  60. Sudakaran S, Kost C, Kaltenpoth M (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. https://doi.org/10.1016/j.tim.2017.02.014

Download references

Acknowledgments

We are deeply grateful to I. Piccini, B. Nervo, P. Gleeson, and T. Kijimoto for field collection and shipment of beetles and to A. Lindsey for generously sharing her time, expertise, and resources.

Funding

Support for this study was provided by National Science Foundation grants IOS 1256689 and 1901680 to APM as well as grant 61369 from the John Templeton Foundation. The opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the National Science Foundation, or the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Contributions

ESP, APM, and ILGN designed the experiments; ESP performed the experiments; ESP analyzed the data; ESP and APM wrote the paper with revisions from ILGN. All authors have approved the manuscript.

Corresponding author

Correspondence to Erik S. Parker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, E.S., Newton, I.L. & Moczek, A.P. (My Microbiome) Would Walk 10,000 miles: Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles. Microb Ecol 80, 435–446 (2020). https://doi.org/10.1007/s00248-020-01514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01514-9

Keywords

Navigation