Advertisement

Rain-Fed Granite Rock Basins Accumulate a High Diversity of Dormant Microbial Eukaryotes

  • Ismael Velasco-González
  • Abel Sanchez-Jimenez
  • David Singer
  • Antonio Murciano
  • Sergio Díez-Hermano
  • Enrique Lara
  • Mercedes Martín-CerecedaEmail author
Environmental Microbiology

Abstract

Rain fed granite rock basins are ancient geological landforms of worldwide distribution and structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along the year. Diversity of animals and plants, and the connexion between communities in different basins have been widely explored in these habitats, but hardly any research has been carried out on microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic microbial communities from these environments. Due to the ephemeral nature of these aquatic environments, we predict that the granitic basins should host a high proportion of dormant microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse communities with representatives of all major eukaryotic taxonomic supergroups, mainly composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. Dissimilarity between basins was mainly characterised by turnover of OTUs. The strong microbial eukaryotic heterogeneity observed among the basins may be explained by a complex combination of deterministic factors (diverging environment in the basins), spatial constraints, and randomness including founder effects. Most interestingly, communities contain organisms that cannot coexist at the same time because of incompatible metabolic requirements, thus suggesting the existence of a pool of dormant organisms whose activity varies along with the changing environment. These organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial islands whose conservation and study deserve further attention.

Keywords

Granite rock basins Microbial reservoirs Protists Fungi Dormancy Conservation 

Notes

Acknowledgements

Permits to collect samples and facilities provided by The Parque Nacional Sierra de Guadarrama are gratefully acknowledged.

Funding Information

This study was funded by Ministerio de Economía y Competitividad (MINECO-Spain), Project MICROEPICS (Ref: CGL2013-40851-P/ BOS 2014-2018; PI: MM-C). EL was funded by a project “Atraccion de talento investigador” by the Consejería de Educación, Juventud y Deporte, Comunidad de Madrid (Spain) 2017-T1/AMB-5210 and by a grant from the Swiss National Foundation for Research SNF 31003A_143960.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2019_1463_MOESM1_ESM.xlsx (247 kb)
ESM 1 (XLSX 247 kb).
248_2019_1463_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb).
248_2019_1463_MOESM3_ESM.docx (47 kb)
ESM 3 (DOCX 47 kb).
248_2019_1463_MOESM4_ESM.pdf (1.6 mb)
ESM 4 (PDF 1647 kb).

References

  1. 1.
    Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992.  https://doi.org/10.1038/nature05202 CrossRefPubMedGoogle Scholar
  2. 2.
    Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226.  https://doi.org/10.1038/nature07236 CrossRefPubMedGoogle Scholar
  3. 3.
    Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes DJS (2016) Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur. J. Protistol. 55:50–74.  https://doi.org/10.1016/j.ejop.2016.03.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240.  https://doi.org/10.1126/science.281.5374.237 CrossRefPubMedGoogle Scholar
  5. 5.
    Esteban GF, Finlay BJ, Warren A (2015) Free-living protozoa. In: Thorp JH, Rogers DC (eds) Freshwater invertebrates: ecology and general biology4th edn. Academic Press, San Diego, pp 113–132Thorp and Covich’sCrossRefGoogle Scholar
  6. 6.
    Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545.  https://doi.org/10.1038/nature12901 CrossRefPubMedGoogle Scholar
  7. 7.
    Lennon J, Jones S (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev Microbiol 9:119–130.  https://doi.org/10.1038/nrmicro2504 CrossRefGoogle Scholar
  8. 8.
    Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nature Rev Microbiol 4:102–112.  https://doi.org/10.1038/nrmicro1341 CrossRefGoogle Scholar
  9. 9.
    Grattepanche JD, Santoferrara LF, McManus GB, Katz LA (2014) Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends Microbiol. 22:432–437.  https://doi.org/10.1016/j.tim.2014.04.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Debroas D, Domaizon I, Humbert JF, Jardillier L, Lepere C, Oudart A, Tai N (2017) Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93(4).  https://doi.org/10.1093/femsec/fix023
  11. 11.
    Pompanon F, Coissac E, Taberlet P (2011) Metabarcoding a new way to analyze biodiversity. Biofutur 30:30–32Google Scholar
  12. 12.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7):e6372.  https://doi.org/10.1371/journal.pone.0006372 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19:21–31.  https://doi.org/10.1111/j.1365-294X.2009.04480.x CrossRefPubMedGoogle Scholar
  14. 14.
    Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukeš J, Mann DG, Mitchell EA, Nitsche F, Romeralo M, Saunders GW, Simpson AG, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, de Vargas C (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10(11):e1001419.  https://doi.org/10.1371/journal.pbio.1001419 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Caron DA, Hu SK (2019) Are we overestimating protistan diversity in nature? Trends Microbiol. 27(3):197–205.  https://doi.org/10.1016/j.tim.2018.10.009 CrossRefPubMedGoogle Scholar
  16. 16.
    de Vargas S, Audic N, Henry J et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.  https://doi.org/10.1126/science.1261605 CrossRefPubMedGoogle Scholar
  17. 17.
    del Campo J, Guillou L, Hehenberger E, Logares R, López-García P, Massana R (2016) Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55:4–11.  https://doi.org/10.1016/j.ejop.2016.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Logares R, Mangot JF, Massana R (2015) Rarity in aquatic microbes: placing protists on the map. Res. Microbiol. 166:831–841.  https://doi.org/10.1016/j.resmic.2015.09.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750.  https://doi.org/10.1038/nature03034 CrossRefPubMedGoogle Scholar
  20. 20.
    Lepère C, Domaizon I, Taïb N, Mangot JF, Bronner G, Boucher D, Debroas D (2013) Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85:85–94.  https://doi.org/10.1111/1574-6941.12100 CrossRefPubMedGoogle Scholar
  21. 21.
    Wu B, Tian J, Bai C, Xiang M, Sun J, Liu X (2013) The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J l7:1299–1309.  https://doi.org/10.1038/ismej.2013.29 CrossRefGoogle Scholar
  22. 22.
    Barreto DP, Conrad R, Klose M, Claus P, Enrich-Prast A (2014) Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment. PLoS One 9(10):e110128.  https://doi.org/10.1371/journal.pone.0110128 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT (2017) Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763.  https://doi.org/10.1002/ecy.1829 CrossRefPubMedGoogle Scholar
  24. 24.
    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol. Lett. 7(12):1225–1241.  https://doi.org/10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  25. 25.
    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  26. 26.
    Coleman BD (1981) Random placement and species–area relations. Math. Biosci. 54:191–215CrossRefGoogle Scholar
  27. 27.
    Boileau MG, Hebert PDN, Schwartz SS (1992) Nonequilibrium gene frequency divergence: persistent founder effects in natural populations. J. Evol. Biol. 5:25–39CrossRefGoogle Scholar
  28. 28.
    Reith F, Zammit CM, Pohrib R, Gregg AL, Wakelin SA (2015) Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits. Appl. Environ. Microbiol. 81:7822–7832.  https://doi.org/10.1128/AEM.01856-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P (2015) Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ. Microbiol. 17:3610–3627.  https://doi.org/10.1111/1462-2920.12591 CrossRefPubMedGoogle Scholar
  30. 30.
    Simon M, Lopez-Garcia P, Deschamps P et al (2015) Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J 9:1941–1953.  https://doi.org/10.1038/ismej.2015.6 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sisson C, Gulla-Devaney B, Katz LA, Grattepanche JD (2018) Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 40:376–390.  https://doi.org/10.1093/plankt/fby020 CrossRefGoogle Scholar
  32. 32.
    Twidale CR (1982) Granite landforms. Elsevier Scientific Publishing Company, Amsterdam, 359 ppGoogle Scholar
  33. 33.
    Brendonck L, Lanfranco S, Timms B, Vanschoenwinkel B (2016) Invertebrates in rock pools. In: Batzer D, Boix D (eds) Invertebrates in freshwater wetlands. Springer International Publishing, Cham, pp 25–53CrossRefGoogle Scholar
  34. 34.
    Jocque M, Vanschoenwinkel B, Brendonck L (2010) Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshw. Biol. 55:1587–1602.  https://doi.org/10.1111/j.1365-2427.2010.02402.x CrossRefGoogle Scholar
  35. 35.
    Anusa A, Ndagurwa HGT, Magadza CHD (2012) The influence of pool size on species diversity and water chemistry in temporary rock pools on Domboshawa Mountain, northern Zimbabwe. Afr. J. Aquat. Sci. 37(1):89–99.  https://doi.org/10.2989/16085914.2012.666378 CrossRefGoogle Scholar
  36. 36.
    Reed GB, Klugh AB (1924) The correlation between hydrogen-ion concentration and the biota of granite and limestone pools. Ecology 5:272–275CrossRefGoogle Scholar
  37. 37.
    Pinder AM, Halse SA, Shiel RJ, McRae JM (2000) Granite outcrop pools in south-western Australia: foci of diversification and refugia for aquatic invertebrates. J. R. Soc. West. Aust. 83:149–161Google Scholar
  38. 38.
    Rylander K (2011) Protists and invertebrates in temporary pools on enchanted rock, Llano County, Texas: 1965 and 2010. The Free Library. Texas Academy of Science. https://www.thefreelibrary.com/Protists+and+invertebrates+in+temporary+pools+on+Enchanted+Rock%2c...-a0382319889. Accessed 9 Dec 2016
  39. 39.
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091.  https://doi.org/10.1038/s41559-017-0091 CrossRefGoogle Scholar
  40. 40.
    IGME (2017) Mapa Geológico Nacional. Instituto Geológico y Minero de España http://info.igme.es/visorweb/ Accessed 20 June 2018
  41. 41.
    García-Rodríguez M, Gómez-Heras M, Álvarez de Buergo M, Fort R, Aroztegui J (2015) Polygonal cracking associated to vertical and subvertical fracture surfaces in granite (La Pedriza del Manzanares, Spain): considerations for a morphological classification. J. Iber. Geol. 41(3):365–383.  https://doi.org/10.5209/rev_JIGE.2015.v41.n3.48860 CrossRefGoogle Scholar
  42. 42.
    Domínguez Villar D (2007) Análisis morfométrico de pilancones: consideraciones genéticas, evolutivas y paleoambientales. Dissertation 336 pp. UCM. MadridGoogle Scholar
  43. 43.
    Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9:e87624.  https://doi.org/10.1371/journal.pone.0087624 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schiaffino MR, Lara E, Fernández L, Balagué V, Singer D, Seppey CW, Massana R, Izaguirre I (2016) Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18(12):5249–5264.  https://doi.org/10.1111/1462-2920.13566 CrossRefPubMedGoogle Scholar
  45. 45.
    Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3):443–453CrossRefGoogle Scholar
  46. 46.
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WH, Lara E, le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41:597–604.  https://doi.org/10.1093/nar/gks1160 CrossRefGoogle Scholar
  47. 47.
    Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. Peer J 2:e593.  https://doi.org/10.7717/peerj.593 CrossRefPubMedGoogle Scholar
  48. 48.
    Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:265–270Google Scholar
  49. 49.
    Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Frontiers in measuring biodiversity. Oxford University Press, New York, pp 39–54Google Scholar
  50. 50.
    Simpson EH (1949) Measurements of diversity. Nature 163:688.  https://doi.org/10.1038/163688a0 CrossRefGoogle Scholar
  51. 51.
    Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  52. 52.
    Pielou EC (1966) The measurement of diversity in different types of biological collection. J. Theor. Biol. 13:131–144CrossRefGoogle Scholar
  53. 53.
    Oksanen F, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Community ecology package version 2.3-1. Date 2015-09-24. 285 ppGoogle Scholar
  54. 54.
    Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1):134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  55. 55.
    Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4:552–557.  https://doi.org/10.1111/2041-210X.12029 CrossRefGoogle Scholar
  56. 56.
    Gómez-Rodríguez C, Baselga A (2018) Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41:1–10.  https://doi.org/10.1111/ecog.03693 CrossRefGoogle Scholar
  57. 57.
    Fontaneto D, Eckert EM, Anicic N, Lara E, Mitchell EAD (2019) We are ready for faunistic surveys of bdelloid rotifers through DNA barcoding: the example of Sphagnum bogs of the Swiss Jura Mountains. Limnetica 38:213–225.  https://doi.org/10.23818/limn.38.02 CrossRefGoogle Scholar
  58. 58.
    Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66(1):4–119.  https://doi.org/10.1111/jeu.12691 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Simon M, Lopez-Garcıa P, Deschamps P, Restoux G, Bertolino P, Moreira D, Jardillier L (2016) Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events. Front. Microbiol. 7:812.  https://doi.org/10.3389/fmicb.2016.00812 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brendonck L, Jocque M, Hulsmans A, Vanschoenwinkel B (2010) Pools ‘on the rocks’: freshwater rock pools as model system in ecological and evolutionary research. Limnetica 29:25–40Google Scholar
  61. 61.
    Meier S, Soininen J (2014) Phytoplankton metacommunity structure in subarctic rock pools. Aquat. Microb. Ecol. 73:81–91.  https://doi.org/10.3354/ame01711 CrossRefGoogle Scholar
  62. 62.
    Bengtsson J, Ebert D (1998) Distributions and impacts of microparasites on Daphnia in a rock pool metapopulation. Oecologia 115:213–221.  https://doi.org/10.1007/s004420050510 CrossRefPubMedGoogle Scholar
  63. 63.
    Bass D, Cavalier-Smith T (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int. J. Syst. Evol. Microbiol. 54:2393–2404.  https://doi.org/10.1099/ijs.0.63229-0 CrossRefPubMedGoogle Scholar
  64. 64.
    Fiore-Donno AM, Rixen C, Rippin M, Glaser K, Samolov E, Karsten U, Becker B, Bonkowski M (2018) New barcoded primers for efficient retrieval of cercozoan sequences in high-throughputenvironmental diversity surveys, with emphasis on world-wide biological soil crusts. Mol. Ecol. Resour. 18(2):229–239.  https://doi.org/10.1111/1755-0998.12729 CrossRefPubMedGoogle Scholar
  65. 65.
    Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F (2016) Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J 10:2488–2497.  https://doi.org/10.1038/ismej.2016.31 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T (2009) Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding Zooflagellates in soil (Protozoa: Cercozoa). Protist 160:159–189.  https://doi.org/10.1016/j.protis.2008.11.007 CrossRefPubMedGoogle Scholar
  67. 67.
    Ekelund F (1996) Growth kinetics of five common heterotrophic soil flagellates. Eur. J. Soil Biol. 32:15–24Google Scholar
  68. 68.
    Hess S, Melkonian M (2013) The mystery of clade X: Orciraptor gen. nov and Viridiraptor gen. nov are highly specialised, algivorous amoeboflagellates (Glissomonadida, Cercozoa). Protist 164:706–747.  https://doi.org/10.1016/j.protis.2013.07.003 CrossRefPubMedGoogle Scholar
  69. 69.
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol. Biochem. 112:68–76.  https://doi.org/10.1016/j.soilbio.2017.05.002 CrossRefGoogle Scholar
  70. 70.
    Beyond the human eye. http://beyondthehumaneye.blogspot.com/2009/07/ Accessed 20 th June 2019
  71. 71.
    Kaštovský J (2008) A report of Stephanosphaera pluvialis COHN 1852 (Chlorophyta, Chlamydophyceae). Fottea 8:109–110.  https://doi.org/10.5507/fot.2008.006 CrossRefGoogle Scholar
  72. 72.
    Saad JF, Schiaffino MR, Vinocur A, O'Farrell I, Tell G, Izaguirre I (2013) Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. J. Plankton Res. 35:1220–1233.  https://doi.org/10.1093/plankt/fbt075 CrossRefGoogle Scholar
  73. 73.
    Correll D (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J. Environ. Qual. 27:261–266CrossRefGoogle Scholar
  74. 74.
    Carlson RE (1977) A trophic state index for lakes. Limnol. Oceanogr. 22:361–369.  https://doi.org/10.4319/lo.1977.22.2.0361 CrossRefGoogle Scholar
  75. 75.
    Kolodziej K, Stoeck T (2007) Cellular identification of a novel uncultured marine stramenopile (MAST-12 clade) small-subunit rRNA gene sequence from a Norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy. Appl. Environ. Microbiol. 73(8):2718–2726.  https://doi.org/10.1128/AEM.02158-06 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lara E, Mitchell EAD, Moreira D, López-García P (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162:14–32.  https://doi.org/10.1016/j.protis.2010.05.003 CrossRefPubMedGoogle Scholar
  77. 77.
    Massana R, del Campo J, Sieracki ME, Audic S, Logares R (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866.  https://doi.org/10.1038/ismej.2013.204 CrossRefPubMedGoogle Scholar
  78. 78.
    Bernard C, Simpson AGB, Patterson DJ (2000) Some free-living flagellates (Protista) from anoxic habitats. Ophelia 52:113–142.  https://doi.org/10.1080/00785236.1999.10409422 CrossRefGoogle Scholar
  79. 79.
    Lara E, Acosta-Mercado D (2012) A molecular perspective on ciliates as soil bioindicators. Eur. J. Soil Biol. 49:107–111.  https://doi.org/10.1016/j.ejsobi.2011.11.001 CrossRefGoogle Scholar
  80. 80.
    Bourland W, Rotterová J, Čepička I (2018) Morphologic and molecular characterization of Brachonella pulchra (Kahl, 1927) comb. nov. (Armophorea, Ciliophora) with comments on cyst structure and formation. Int. J. Syst. Evol. Microbiol. 68(9):3052–3065.  https://doi.org/10.1099/ijsem.0.002888 CrossRefPubMedGoogle Scholar
  81. 81.
    Galand PE, Casamayor EO, Kirchman DL, Love JC (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. U. S. A. 106(52):22427–22432.  https://doi.org/10.1073/pnas.0908284106 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored rare biosphere. Proc. Natl. Acad. Sci. U. S. A. 103:12115–12120.  https://doi.org/10.1073/pnas.0605127103 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F (2014) Ciliates and the rare biosphere: a review. J. Eukaryot. Microbiol. 61:404–409.  https://doi.org/10.1111/jeu.12121 CrossRefPubMedGoogle Scholar
  84. 84.
    Debroas D, Hugoni M, Domaizon I (2015) Evidence for an active rare biosphere within freshwater protists community. Mol. Ecol. 24:1236–1247.  https://doi.org/10.1111/mec.13116 CrossRefPubMedGoogle Scholar
  85. 85.
    Weisse T (2014) Ciliates and the rare biosphere – community ecology and population dynamics. J. Eukaryot. Microbiol. 61(4):419–433.  https://doi.org/10.1111/jeu.12123 CrossRefPubMedGoogle Scholar
  86. 86.
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, van der Heijden M, Youssef NH, Zhang X, Wei Z, Hol WH (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862.  https://doi.org/10.1038/ismej.2016.174 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Pillet L, Fontaine D, Pawlowski J (2012) Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in foraminifera. PLoS One 7:e32373.  https://doi.org/10.1371/journal.pone.0032373 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kudryavtsev A, Gladkikh A (2017) Two new species of Ripella (Amoebozoa, Vannellida) and unusual intragenomic variability in the SSU rRNA gene of this genus. Eur. J. Protistol. 61:92–106.  https://doi.org/10.1016/j.ejop.2017.09.003 CrossRefPubMedGoogle Scholar
  89. 89.
    Miranda LN, Zhuang YY, Zhang H, Lin S (2012) Phylogenetic analysis guided by intragenomic SSU rDNA polymorphism refines classification of “Alexandrium tamarense” species complex. Harmful Algae 16:35–48.  https://doi.org/10.1016/j.hal.2012.01.002 CrossRefGoogle Scholar
  90. 90.
    Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 17:184–191.  https://doi.org/10.1101/gr.5457707 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. 15:715–725.  https://doi.org/10.1002/aqc.748 CrossRefGoogle Scholar
  92. 92.
    Brendonck L, De Meester L, Riddoch BJ (2000) Regional structuring of genetic variation in short-lived rock pool populations of Branchipodopsis wolfi (Crustacea: Anostraca). Oecologia 123:506–515CrossRefGoogle Scholar
  93. 93.
    Sassenhagen I, Wilken S, Godhe A, Rengefors K (2015) Phenotypic plasticity and differentiation in an invasive freshwater microalga. Harmful Algae 41:38–45.  https://doi.org/10.1016/j.hal.2014.11.001 CrossRefGoogle Scholar
  94. 94.
    Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems4th edn. Blackwell Publishing Ltd., p 750Google Scholar
  95. 95.
    Ren H, Yuan X, Yue J, Wang X, Liu H (2016) Potholes of mountain river as biodiversity spots: structure and dynamics of the benthic invertebrate community. Pol. J. Ecol. 64(1):70–83.  https://doi.org/10.3161/15052249pje2016.64.1.007 CrossRefGoogle Scholar
  96. 96.
    Soininen J, Luoto M (2012) Is catchment productivity a useful predictor of taxa richness in lake plankton communities? Ecol. Appl. 22:624–633.  https://doi.org/10.1890/11-1126.1 CrossRefPubMedGoogle Scholar
  97. 97.
    Therriault TW, Kolasa J (2001) Desiccation frequency reduces species diversity and predictability of community structure in coastal rock pools. Isr J Zool 47(4):477–489CrossRefGoogle Scholar
  98. 98.
    Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–878.  https://doi.org/10.1046/j.1365-2699.1999.00305.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Genética, Fisiología y Microbiología. Facultad de Ciencias BiológicasUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias BiológicasUCMMadridSpain
  3. 3.Laboratory of Soil Biodiversity, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  4. 4.Department of Zoology, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  5. 5.Real Jardín BotánicoMadridSpain

Personalised recommendations