Advertisement

The Marine Bacterium Shewanella woodyi Produces C8-HSL to Regulate Bioluminescence

  • Mahmoud Hayek
  • Claudine Baraquet
  • Raphaël Lami
  • Yves Blache
  • Maëlle MolmeretEmail author
Environmental Microbiology

Abstract

Quorum sensing (QS), a cell-to-cell communication system involved in the synchronization of bacterial behavior in a cell-density-dependent manner has been shown to control phenotypes such as luminescence, virulence, and biofilm formation. The marine strain, Shewanella woodyi MS32 has been identified as a luminous bacterium. Very little information is known on this bacterium, in particular if its luminescence and biofilm formation are controlled by QS. In this study, we have demonstrated that S. woodyi MS32 emits luminescence in planktonic and sessile conditions. The putative QS regulatory genes homologous to luxI and luxR identified in the S. woodyi MS32 genome, named swoI and swoR, are divergently transcribed and are not genetically linked to the lux operon in contrast with its closest parent Shewanella hanedai and with Aliivibrio fischeri. Interestingly, the phylogenetic analysis based on the SwoI and SwoR sequences shows that a separate horizontal gene transfer (HGT) occurred for the regulatory genes and for the lux operon. Functional analyses demonstrate that the swoI and swoR mutants were non-luminescent. Expression of lux genes was impaired in the QS regulatory mutants. N-octanoyl-L-homoserine lactone (C8-HSL) identified using liquid chromatography mass spectrometry in the wild-type strain (but not in ΔswoI) can induce S. woodyi luminescence. No significant difference has been detected between the wild-type and mutants on adhesion and biofilm formation in the conditions tested. Therefore, we have demonstrated that the luxCDABEG genes of S. woodyi MS32 are involved in luminescence emission and that the swoR/swoI genes, originated from a separate HGT, regulate luminescence through C8-HSL production.

Keywords

Marine bacteria Shewanella woodyi Quorum sensing Luminescence HGT Biofilm 

Notes

Acknowledgements

We thank J.A. Gralnick from the BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities for kindly providing the Shewanella strain and the pSMV3 and pBBR1MCS-2 plasmids. We thank Yoan Ferandin for the advisory help in the qPCR. We thank P. Poupin from the Laboratory of Microbial Biodiversity and Biotechnology of the Sorbonne Universities and CNRS for his help in the construction of the complementation plasmids. We also thank anonymous reviewers for their commentaries and suggestions.

Funding Information

Mahmoud Hayek is the beneficiary of the Lebanese grants from the Association of Specialization and Scientific Guidance (ASSG). This research was also partly funded by the EMBRC network.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

248_2019_1454_MOESM1_ESM.pdf (927 kb)
ESM 1 (PDF 926 kb)

References

  1. 1.
    Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol lin 57:2823–2829.  https://doi.org/10.1099/ijs.0.65081-0 CrossRefGoogle Scholar
  2. 2.
    Hmelo LR (2017) Quorum sensing in marine microbial environments. Annu Rev Mar Sci 9:257–281.  https://doi.org/10.1146/annurev-marine-010816-060656 CrossRefGoogle Scholar
  3. 3.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449CrossRefGoogle Scholar
  4. 4.
    Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Popov VL, Horneman AJ, Chopra AK (2009) N-Acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology 155:3518–3531.  https://doi.org/10.1099/mic.0.031575-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346.  https://doi.org/10.1146/annurev.cellbio.21.012704.131001 CrossRefPubMedGoogle Scholar
  6. 6.
    Dunlap P (2014) Biochemistry and genetics of bacterial bioluminescence. Adv Biochem Eng Biotechnol 144:37–64.  https://doi.org/10.1007/978-3-662-43385-0_2 CrossRefPubMedGoogle Scholar
  7. 7.
    Dunlap PV, Urbanczyk H (2013) Luminous Bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin Heidelberg, pp 495–528CrossRefGoogle Scholar
  8. 8.
    Kita-Tsukamoto K, Yao K, Kamiya A, Yoshizawa S, Uchiyama N, Kogure K, Wada M (2006) Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis. FEMS Microbiol Lett 256:298–303.  https://doi.org/10.1111/j.1574-6968.2006.00129.x CrossRefPubMedGoogle Scholar
  9. 9.
    Sharifian S, Homaei A, Hemmati R, Khajeh K (2017) Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J Photochem Photobiol B 172:115–128.  https://doi.org/10.1016/j.jphotobiol.2017.05.021 CrossRefPubMedGoogle Scholar
  10. 10.
    Lin B, Wang Z, Malanoski AP, O'Grady EA, Wimpee CF, Vuddhakul V, Alves Jr N, Thompson FL, Gomez-Gil B, Vora GJ (2010) Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA-1116 and HY01 as Vibrio campbellii. Environ Microbiol Rep 2:81–89.  https://doi.org/10.1111/j.1758-2229.2009.00100.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039.  https://doi.org/10.1099/00207713-47-4-1034 CrossRefPubMedGoogle Scholar
  12. 12.
    Ersoy Omeroglu E, Karaboz I, Sudagidan M (2014) Characteristics and genetic diversity of bioluminescent Shewanella woodyi strains isolated from the Gulf of Izmir, Turkey. Folia Microbiol (Praha) 59:79–92.  https://doi.org/10.1007/s12223-013-0269-z CrossRefGoogle Scholar
  13. 13.
    Liu N, Pak T, Boon EM (2010) Characterization of a diguanylate cyclase from Shewanella woodyi with cyclase and phosphodiesterase activities. Mol BioSyst 6:1561–1564.  https://doi.org/10.1039/C002246B CrossRefPubMedGoogle Scholar
  14. 14.
    Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry 51:2087–2099.  https://doi.org/10.1021/bi201753f CrossRefPubMedGoogle Scholar
  15. 15.
    Kasai S, Okada K, Hoshino A, Iida T, Honda T (2007) Lateral transfer of the lux gene cluster. J Biochem 141:231–237.  https://doi.org/10.1093/jb/mvm023 CrossRefPubMedGoogle Scholar
  16. 16.
    Urbanczyk H, Ast JC, Kaeding AJ, Oliver JD, Dunlap PV (2008) Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. J Bacteriol 190:3494–3504.  https://doi.org/10.1128/JB.00101-08 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045CrossRefGoogle Scholar
  18. 18.
    Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286.  https://doi.org/10.1111/j.1365-2958.1994.tb00422.x CrossRefPubMedGoogle Scholar
  19. 19.
    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711.  https://doi.org/10.1099/00221287-143-12-3703 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405PubMedPubMedCentralGoogle Scholar
  21. 21.
    Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC, Kjelleberg S (1996) Responses to stress and nutrient availability by the marine Ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294PubMedPubMedCentralGoogle Scholar
  22. 22.
    Surette MG, Bassler BL (1998) Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A 95:7046–7050CrossRefGoogle Scholar
  23. 23.
    Aye M, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magne A, Culioli G, Koffi Nevry R, Rabah N, Blache Y, Molmeret M (2015) Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 161:2039–2051.  https://doi.org/10.1099/mic.0.000147 CrossRefGoogle Scholar
  24. 24.
    Rajput A, Kumar M (2017) In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci Rep 7:6969.  https://doi.org/10.1038/s41598-017-07241-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Antunes LC, Schaefer AL, Ferreira RB, Qin N, Stevens AM, Ruby EG, Greenberg EP (2007) Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon. J Bacteriol 189:8387–8391.  https://doi.org/10.1128/JB.00736-07 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ke X, Miller LC, Bassler BL (2015) Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor. Mol Microbiol 95:127–142.  https://doi.org/10.1111/mmi.12852 CrossRefPubMedGoogle Scholar
  27. 27.
    Churchill MEA, Chen L (2011) Structural basis of acyl-homoserine lactone-dependent signaling. Chem Rev 111:68–85.  https://doi.org/10.1021/cr1000817 CrossRefPubMedGoogle Scholar
  28. 28.
    Parsek MR, Schaefer AL, Greenberg EP (1997) Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol Microbiol 26:301–310.  https://doi.org/10.1046/j.1365-2958.1997.5741935.x CrossRefPubMedGoogle Scholar
  29. 29.
    Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR (2015) A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 5:16.  https://doi.org/10.3389/fcimb.2015.00016 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Venturi V, Subramoni S, Sabag-Daigle A, Ahmer BMM (2018) Methods to study solo/orphan quorum-sensing receptors. Methods Mol Biol 1673:145–159.  https://doi.org/10.1007/978-1-4939-7309-5_12 CrossRefPubMedGoogle Scholar
  31. 31.
    Learman DR, Yi H, Brown SD, Martin SL, Geesey GG, Stevens AM, Hochella Jr MF (2009) Involvement of Shewanella oneidensis MR-1 LuxS in biofilm development and sulfur metabolism. Appl Environ Microbiol 75:1301–1307.  https://doi.org/10.1128/AEM.01393-08 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 CrossRefGoogle Scholar
  33. 33.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu J, Fu K, Wang Y, Wu C, Li F, Shi L, Ge Y, Zhou L (2017) Detection of diverse N-Acyl-Homoserine Lactones in Vibrio alginolyticus and regulation of biofilm formation by N-(3-Oxodecanoyl) Homoserine Lactone In vitro. Front Microbiol 8:1097.  https://doi.org/10.3389/fmicb.2017.01097 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Greenberg EP, Parsek MR (2016) Quorum sensing influences Burkholderia thailandensis biofilm development and matrix production. J Bacteriol 198:2643–2650.  https://doi.org/10.1128/JB.00047-16 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33.  https://doi.org/10.1016/j.tim.2004.11.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704–708.  https://doi.org/10.1126/science.1174269 CrossRefPubMedGoogle Scholar
  39. 39.
    Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315.  https://doi.org/10.1007/BF02601812 CrossRefGoogle Scholar
  40. 40.
    Bose JL, Rosenberg CS, Stabb EV (2008) Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch Microbiol 190:169–183.  https://doi.org/10.1007/s00203-008-0387-1 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586.  https://doi.org/10.1128/jb.182.16.4578-4586.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Czyz A, Wrobel B, Wegrzyn G (2000) Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146(Pt 2):283–288.  https://doi.org/10.1099/00221287-146-2-283 CrossRefPubMedGoogle Scholar
  43. 43.
    Walker EL, Bose JL, Stabb EV (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl Environ Microbiol 72:6600–6606.  https://doi.org/10.1128/AEM.01272-06 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci U S A 109:853–857.  https://doi.org/10.1073/pnas.1116683109 CrossRefPubMedGoogle Scholar
  45. 45.
    Guillonneau R, Baraquet C, Bazire A, Molmeret M (2018) Multispecies biofilm development of marine bacteria implies complex relationships through competition and synergy and modification of matrix components. Front Microbiol 9:1960.  https://doi.org/10.3389/fmicb.2018.01960 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hansen LB, Ren D, Burmolle M, Sorensen SJ (2017) Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation. ISME J 11:300–303.  https://doi.org/10.1038/ismej.2016.107 CrossRefPubMedGoogle Scholar
  47. 47.
    Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555.  https://doi.org/10.1016/j.copbio.2008.10.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire MAPIEM, EA4323Université de ToulonLa Garde CedexFrance
  2. 2.Sorbonne Universités, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls-sur-MerFrance

Personalised recommendations