Natural Communities of Carotenogenic Chlorophyte Haematococcus lacustris and Bacteria from the White Sea Coastal Rock Ponds

  • Anna Kublanovskaya
  • Alexei Solovchenko
  • Tatyana Fedorenko
  • Konstantin ChekanovEmail author
  • Elena Lobakova
Microbiology of Aquatic Systems


Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial composition of industrial algal cultures is widely recognized as important. However, there is a dearth of information about bacterial composition of H. lacustris communities. In current work, we analyze the composition of natural H. lacustris communities from the White Sea coastal temporal rock ponds. For the first time, a 16S rRNA gene-based metagenome of natural H. lacustris bacterial communities has been generated. Main results of its analysis are as follow. Bacterial families Comamonadaceae, Cytophagaceae, Xanthomonadaceae, Acetobacteraceae, Rhodobacteraceae, and Rhodocyclaceae were observed in all studied H. lacustris natural communities. They also contained genera Hydrogenophaga and Cytophaga. Bacteria from the Hydrogenophaga genus were present in H. lacustris cultures after their isolation under the conditions of laboratory cultivation. Similar to other planktonic microalgae, H. lacustris forms a phycosphere around the cells. In this zone, bacteria attached to the algal surface. The contact between H. lacustris and bacteria is maintained even after sample drying. The study provides information about possible members of H. lacustris core microbiome, which can be presented in the industrial and laboratory cultures of the microalga.


Haematococcus lacustris Algal-bacterial community Microbial communities Metagenome Carotenogenic algae 



Abundance-based coverage


Abundance-based coverage estimator


Dissolved organic carbon


Environmental DNA



NChao − 1

Non-parametric Chao-1 estimator


Observed number of taxa


Operation taxonomic unit


Scanning electron microscopy


Shannon entropy index


Simpson reverse index



Microscopic studies were conducted using equipment of the Center of Microscopy of White Sea Biological Station of Moscow State University. A part of the work was also supported by Council for grants of the President of the Russian Federation.

Funding Information

This study funded by the Russian Foundation for Basic Research (grant no. 18-29-25050). The publication was prepared with partial support of the RUDN University Program 5-100. A part of the work was also supported by Council for grants of the President of the Russian Federation.

Supplementary material

248_2019_1437_MOESM1_ESM.pdf (130 kb)
ESM 1 (PDF 129 kb)


  1. 1.
    Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Seymour JR, Amin SA, Raina JB, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2:17065PubMedCrossRefGoogle Scholar
  3. 3.
    Ajani PA, Kahlke T, Siboni N, Carney R, Murray SA, Seymour JR (2018) The microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front. Microbiol. 9:2758PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA (2018) Bacterial communities of diatoms display strong conservation across strains and time. Front. Microbiol. 9:659PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X (2018) Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environ. Microbiol. 20:4385–4400PubMedCrossRefGoogle Scholar
  6. 6.
    Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143:265–277CrossRefGoogle Scholar
  7. 7.
    Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160–167PubMedCrossRefGoogle Scholar
  8. 8.
    Boussiba S (2000) Carotenogenesis in the green alga Haematococcus lacustris: cellular physiology and stress response. Physiol. Plant. 108:111–117CrossRefGoogle Scholar
  9. 9.
    Nakada T, Ota S (2016) What is the correct name for the type of Haematococcus Flot. (Volvocales, Chlorophyceae)? Taxon 65:343–348CrossRefGoogle Scholar
  10. 10.
    Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210–216PubMedCrossRefGoogle Scholar
  11. 11.
    Carney L, Sorensen K (2016) Haematococcus pluvialis culture compositions (In Llc HD)Google Scholar
  12. 12.
    Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biot 74:1163–1174CrossRefGoogle Scholar
  13. 13.
    Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chekanov K, Vasilieva S, Solovchenko A, Lobakova E (2018) Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures. Photosynthetica 56:1268–1277CrossRefGoogle Scholar
  15. 15.
    Chekanov K, Schastnaya E, Neverov K, Leu S, Boussiba S, Zarka A, Solovchenko A (2019) Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable condition and under stress. Biochim Biophys Acta Gen Subj 1863:1429–1442PubMedCrossRefGoogle Scholar
  16. 16.
    Solovchenko A, Chekanov K (2014) Production of carotenoids using microalgae cultivated in photobioreactors. In: Paek KY, Niranjana H, Zhong JJ (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht, рр 69–93Google Scholar
  17. 17.
    Droop MR (1954) Conditions governing haematochrome formation and loss in the alga Haematococcus lacustris Flotow. Arch Mikrobiol 20:391–397PubMedCrossRefGoogle Scholar
  18. 18.
    Pentecost A, Phylum Chlorophyta (2011) Order Volvocales. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Second edition. Cambridge University Press, Cambridge, pp 381–409Google Scholar
  19. 19.
    Delucca R, McCracken MD (1977) Observations on interactions between naturally-collected bacteria and several species of algae. Hydrobiologia 55:71–75CrossRefGoogle Scholar
  20. 20.
    Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112:70–81PubMedCrossRefGoogle Scholar
  21. 21.
    Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur. J. Phycol. 44:509–514CrossRefGoogle Scholar
  22. 22.
    Chekanov K, Kublanovskaya A, Lobakova E (2019) Eukaryotic sequences in the 16Sr RNA metagenomic dataset of algal-bacterial consortia of the White Sea coastal zone. J Eukaryot Microbiol 66(5):853–856Google Scholar
  23. 23.
    Droop MR (1953) On the ecology of flagellates from some brackish and fresh water rockpools of FinlandGoogle Scholar
  24. 24.
    Klochkova TA, Kwak MS, Han JW, Motomura T, Nagasato C, Kim GH (2013) Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard). Algae 28:185–192CrossRefGoogle Scholar
  25. 25.
    Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of astaxanthin by a new Haematococcus lacustris strain BM1 from the White Sea coastal rocks (Russia). Mar Drugs 12:4504–4520PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Seckbach J, Chapman DJ, Garbary D, Oren A, Reisser W (2007) Algae and cyanobacteria under environmental extremes. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 781–786CrossRefGoogle Scholar
  27. 27.
    Chekanov K, Lukyanov A, Boussiba S, Aflalo C, Solovchenko A (2016) Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynth. Res. 128:313–323PubMedCrossRefGoogle Scholar
  28. 28.
    Bolhuis H, Fillinger L, Stal LJ (2013) Coastal microbial mat diversity along a natural salinity gradient. PLoS One 8:e63166PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nozhevnikova AN, Botchkova EA, Plakunov VK (2015) Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology 84:731–750CrossRefGoogle Scholar
  30. 30.
    Pesciaroli C, Cupini F, Selbmann L, Barghini P, Fenice M (2012) Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol. 35:435–445CrossRefGoogle Scholar
  31. 31.
    Pesciaroli C, Rodelas B, Juarez-Jiménez B, Barghini P, Fenice M (2015а) Bacterial community structure of a coastal area in Kandalaksha Bay, White Sea, Russia: possible relation to tidal hydrodynamics. Ann Microbiol 65:443–453Google Scholar
  32. 32.
    Pesciaroli C, Barghini P, Cerfolli F, Bellisario B, Fenice M (2015b) Relationship between phylogenetic and nutritional diversity in Arctic (Kandalaksha Bay) seawater planktonic bacteria. Ann Microbiol 65:2405–2414CrossRefGoogle Scholar
  33. 33.
    Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV (2015) Metagenomic analyses of White Sea picoalgae: first data. Biochemistry 80:1514–1521PubMedPubMedCentralGoogle Scholar
  34. 34.
    Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Troitsky AV (2017) Phototrophic picoeukaryotes of Onega Bay, the White Sea: abundance and species composition. Mosc Univ Biol Sci Bull 72:109–114CrossRefGoogle Scholar
  35. 35.
    Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV (2018) Photosynthetic picoeukaryotes in the land-fast ice of the White Sea, Russia. Microb Ecol 75:582–597PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Krasnova ED, Pantyulin AN, Matorin DN, Todorenko DA, Belevich TA, Milyutina IA, Voronov DA (2014) Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea. Microbiology 83:270–277CrossRefGoogle Scholar
  37. 37.
    Krasnova ED, Kharcheva AV, Milyutina IA, Voronov DA, Patsaeva SV (2015) Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods. J Mar Biol Assoc UK 95:1579–1590CrossRefGoogle Scholar
  38. 38.
    Kublanovskaya A, Chekanov K, Solovchenko A, Lobakova E (2019) Cyanobacterial diversity in the algal–bacterial consortia from Subarctic regions: new insights from the rock baths at White Sea Coast. Hydrobiologia 830:17–31CrossRefGoogle Scholar
  39. 39.
    Allewaert CC, Vanormelingen P, Pröschold T, Gómez PI, González MA, Bilcke G, D’Hondt S, Vyverman W (2015) Species diversity in European Haematococcus pluvialis (Chlorophyceae, Volvocales). Phycologia 54:583–598CrossRefGoogle Scholar
  40. 40.
    Buchheim MA, Sutherland DM, Buchheim JA, Wolf M (2013) The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur J Phycol 48:318–329CrossRefGoogle Scholar
  41. 41.
    Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 15 June 2019
  42. 42.
    Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ismagulova T, Chekanov K, Gorelova O, Baulina O, Semenova L, Selyakh I, Chivkunova O, Lobakova E, Karpova O, Solovchenko A (2018) A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling. J Appl Phycol 30:2737–2750CrossRefGoogle Scholar
  44. 44.
    Chekanov K, Schastnaya E, Solovchenko A, Lobakova E (2017) Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. J Photochem Photobiol B Biol 171:58–66CrossRefGoogle Scholar
  45. 45.
    Kostikov IJ, Romanenko PO, Demchenko EM, Darienko TM, Mikhayljuk TI, Rybchnnskiy OV, Solonenko AM (2001) Soil algae of Ukraine (Vodorosti gruntiv Ukrajiny) Phytosotsiologichniy center. Kiev:300Google Scholar
  46. 46.
    John DM, Tsarenko PM (2011) Phylum Chlorophyta (green algae) order Chlorococcales. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal Flora of the British Isles2nd edn. Cambridge University Press, Cambridge, pp 412–414Google Scholar
  47. 47.
    Gorelova OA, Baulina OI, Solovchenko AE, Chekanov KA, Chivkunova OB, Fedorenko TA, Lobakova ES (2015) Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates. Protoplasma 252:489–503PubMedCrossRefGoogle Scholar
  48. 48.
    Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917PubMedCrossRefGoogle Scholar
  49. 49.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Huse SM, Welch DBM, Voorhis A, Shipunova A, Morrison HG, Eren AM, Sogin ML (2014) VAMPS: a website for visualization and analysis of microbial population structures. BMC bioinformatics 15:41PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y et al (2013) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42:D633–D642PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  53. 53.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res. 36:D25–D30PubMedCrossRefGoogle Scholar
  54. 54.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  56. 56.
    Simpson EH, Sutherland GBBM, Blackwell DE (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  57. 57.
    Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat:265–270Google Scholar
  58. 58.
    Chao A (2005) Species estimation and applications. In: Kotz S, Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences2nd edn. Wiley, New York, pp 7907–7916Google Scholar
  59. 59.
    Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  60. 60.
    Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S (2012) Light-induced oil globule migration in Haematococcus pluvialis (Chlorophyceae). J. Phycol. 48:1209–1219PubMedCrossRefGoogle Scholar
  61. 61.
    Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699PubMedCrossRefGoogle Scholar
  62. 62.
    Ramanan R, Kang Z, Kim BH, Cho DH, Jin L, Oh HM, Kim HS (2015) Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 8:140–144CrossRefGoogle Scholar
  63. 63.
    Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P et al (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880PubMedCrossRefGoogle Scholar
  64. 64.
    Palinska KA, Vogt JC, Surosz W (2018) Biodiversity analysis of the unique geothermal microbial ecosystem of the Blue Lagoon (Iceland) using next-generation sequencing (NGS). Hydrobiologia 811:93–102CrossRefGoogle Scholar
  65. 65.
    Fujii M, Takano Y, Kojima H, Hoshino T, Tanaka R, Fukui M (2010) Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microb Ecol 59:466–475PubMedCrossRefGoogle Scholar
  66. 66.
    Krieg NR, Staley JT, Hedlund BP, Paster BJ, Ward N, Ludwig W et al (2010) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Bergey’s Manual of Systematic Bacteriology. Springer, New YorkGoogle Scholar
  67. 67.
    Garrity GM, Bell JA, Lilburn T (2005) Class I. Alphaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual® of systematic bacteriology. Springer, New York, pp 1–574Google Scholar
  68. 68.
    Lee PO, McLellan SL, Graham LE, Young EB (2015) Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities. FEMS Microbiol. Ecol 91:1–12PubMedCrossRefGoogle Scholar
  69. 69.
    Rutter M, Nedwell DB (1994) Influence of changing temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: competition and survival in non-steady-state temperature environments. Appl Environ Microb 60:1993–2002Google Scholar
  70. 70.
    He D, Ren L, Wu Q (2012) Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: diversity and host-specificity. Chin J Oceanol Limn 30:237–247CrossRefGoogle Scholar
  71. 71.
    Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344PubMedCrossRefGoogle Scholar
  72. 72.
    Qiao YJ, Li ZH, Wang X, Zhu B, Hu YG, Zeng ZH (2012) Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ. 58:174–180CrossRefGoogle Scholar
  73. 73.
    Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226CrossRefGoogle Scholar
  74. 74.
    Meusnier I, Olsen JL, Stam WT, Destombe C, Valero M (2001) Phylogenetic analyses of Caulerpa taxifolia (Chlorophyta) and of its associated bacterial microflora provide clues to the origin of the Mediterranean introduction. Mol Ecol 10:931–946PubMedCrossRefGoogle Scholar
  75. 75.
    Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S (2003) Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 5:25–35PubMedCrossRefGoogle Scholar
  76. 76.
    Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes. Springer, New YorkGoogle Scholar
  77. 77.
    Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol microbial 52:933–945CrossRefGoogle Scholar
  78. 78.
    Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ (2014) Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs 12:3046–3059PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 38:690–703PubMedCrossRefGoogle Scholar
  80. 80.
    Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476PubMedCrossRefGoogle Scholar
  81. 81.
    Haack TK, McFeters GA (1982) Nutritional relationships among microorganisms in an epilithic biofilm community. Microbial Ecol 8:115–126CrossRefGoogle Scholar
  82. 82.
    Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients [2pt] on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489:179–184CrossRefGoogle Scholar
  83. 83.
    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotech 21:277–286PubMedCrossRefGoogle Scholar
  84. 84.
    Minyuk GS, Chelebieva ES, Chubchikova IN (2014) Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chodat) Petrova (Chlorophyta) in a two-stage culture. Int J Algae 16:354–368CrossRefGoogle Scholar
  85. 85.
    Minyuk G, Chelebieva E, Chubchikova I, Dantsyuk N, Drobetskaya I, Sakhon E, Chekanov K, Solovchenko A (2017) Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 32:245–259CrossRefGoogle Scholar
  86. 86.
    Liu L, Zeng Z, Bee M, Gibson V, Wei L, Huang X, Liu C (2018) Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. J Hazard Mater 349:135–142PubMedCrossRefGoogle Scholar
  87. 87.
    van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 5:124–142Google Scholar
  88. 88.
    Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS (2015) Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Bioresour Technol 175:578–585PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.Centre for Humanities Research and TechnologyNational Research Nuclear University MEPhiMoscowRussia

Personalised recommendations