Skip to main content

Advertisement

Log in

Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups

  • Note
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. https://doi.org/10.1038/Nature05202

    Article  CAS  PubMed  Google Scholar 

  2. Boyer KE, Kertesz JS, Bruno JF (2009) Biodiversity effects on productivity and stability of marine macroalgal communities: the role of environmental context. Oikos 118:1062–1072. https://doi.org/10.1111/j.1600-0706.2009.17252.x

    Article  Google Scholar 

  3. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. BioScience 46:609–620. https://doi.org/10.2307/1312990

    Article  Google Scholar 

  4. Thompson R, Starzomski BM (2007) What does biodiversity actually do? A review for managers and policy makers. Biodivers Conserv 16:1359–1378. https://doi.org/10.1007/s10531-005-6232-9

    Article  Google Scholar 

  5. Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. https://doi.org/10.1038/37348

    Article  CAS  Google Scholar 

  6. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  PubMed  Google Scholar 

  7. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. https://doi.org/10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  8. Thebault E, Loreau M (2003) Food-web constraints on biodiversity-ecosystem functioning relationships. Proc Natl Acad Sci U S A 100:14949–14954. https://doi.org/10.1073/pnas.2434847100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jabiol J, McKie BG, Bruder A et al (2013) Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J Anim Ecol 82:1042–1051. https://doi.org/10.1111/1365-2656.12079

    Article  PubMed  Google Scholar 

  10. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010

    Article  PubMed  Google Scholar 

  11. Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel C, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci 283:20160084. https://doi.org/10.1098/rspb.2016.0084

    Article  Google Scholar 

  12. Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E (2018) Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. Microbiome 6:56. https://doi.org/10.1186/s40168-018-0444-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539. https://doi.org/10.1146/annurev.micro.091208.073346

    Article  CAS  PubMed  Google Scholar 

  14. Rotem O, Pasternak Z, Jurkevitch E (2014) Bdellovibrio and like organisms. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–17

    Chapter  Google Scholar 

  15. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, de Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One 8:e61608. https://doi.org/10.1371/journal.pone.0061608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE (2017) Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing Gram-negative pathogens in a host setting? Annu Rev Microbiol 71:441–457. https://doi.org/10.1146/annurev-micro-090816-093618

    Article  CAS  PubMed  Google Scholar 

  17. Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E (2014) Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol 89:149–161. https://doi.org/10.1111/1574-6941.12342

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Laws EA, Martin JL et al (2018) Relative contributions of Halobacteriovorax and bacteriophage to bacterial cell death under various environmental conditions. mBio 9:e01202–e01218. https://doi.org/10.1128/mBio.01202-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870. https://doi.org/10.1038/ncomms11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S (2016) Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography. Environ Microbiol 18:1764–1781. https://doi.org/10.1111/1462-2920.12926

    Article  PubMed  Google Scholar 

  21. Adair KL, Wilson M, Bost A, Douglas AE (2018) Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J 12:959–972. https://doi.org/10.1038/s41396-017-0020-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458. https://doi.org/10.7554/eLife.00458

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vazquez-Baeza Y, van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. https://doi.org/10.1126/science.1254529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG (2013) Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J 7:781–790. https://doi.org/10.1038/ismej.2012.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, John R, Peng Z, Yuan J, Chu C, du G, Zhou S (2012) The relationship between species richness and evenness in plant communities along a successional gradient: a study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS One 7:e49024. https://doi.org/10.1371/journal.pone.0049024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371

    Article  CAS  Google Scholar 

  27. Gupta S, Tang C, Tran M, Kadouri DE (2016) Effect of predatory bacteria on human cell lines. PLoS One 11:e0161242. https://doi.org/10.1371/journal.pone.0161242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dwidar M, Monnappa AK, Mitchell RJ (2012) The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep 45:71–78. https://doi.org/10.5483/BMBRep.2012.45.2.71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for advice from members of the Schulenburg group and the Collaborative Research Center CRC1182 on Origin and Function of Metaorganisms.

Funding

This work was funded by the CRC1182, projects A4 and B2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinrich Schulenburg.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability

The nucleotide sequence data reported are available in the EMBL databases under the accession number PRJEB30476.

Electronic supplementary material

ESM 1

(PDF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnke, J., Fraune, S., Bosch, T. et al. Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups. Microb Ecol 79, 252–257 (2020). https://doi.org/10.1007/s00248-019-01395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01395-7

Keywords

Navigation