Advertisement

Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney

  • Guillaume Pillot
  • Sylvain Davidson
  • Richard Auria
  • Yannick Combet-Blanc
  • Anne Godfroy
  • Pierre-Pol LiebgottEmail author
Environmental Microbiology

Abstract

To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m−2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions.

Graphical Abstract

Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.

Keywords

Electromicrobiology Exoelectrogenic Hyperthermophilic microorganisms Microbial interaction Deep-sea hydrothermal vent 

Notes

Acknowledgments

The authors thank Erwan Roussel (LM2E, IFREMER Brest) for helpful suggestions, Céline Rommevaux and Françoise Lesongeur for sampling during the MOMARSAT 2014 cruise, the MIM platform (MIO, France) for providing access to their confocal microscopy facility, and the GeT-PlaGe platform (GenoToul, France) for DNA sequencing.

Funding Information

This work received financial support from the CNRS national interdisciplinary research program (PEPS-ExoMod 2016). The project leading to this publication has received funding from European FEDER program under project 1166-39417.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2019_1381_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)
248_2019_1381_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 16 kb)
248_2019_1381_MOESM3_ESM.docx (66 kb)
ESM 3 (DOCX 66 kb)
248_2019_1381_MOESM4_ESM.docx (16 kb)
ESM 4 (DOCX 15 kb)
248_2019_1381_MOESM5_ESM.pdf (446 kb)
ESM 5 (PDF 446 kb)

References

  1. 1.
    Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS (2013) The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4.  https://doi.org/10.3389/fmicb.2013.00124
  2. 2.
    Konn C, Charlou JL, Holm NG, Mousis O (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology 15:381–399.  https://doi.org/10.1089/ast.2014.1198 CrossRefGoogle Scholar
  3. 3.
    Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30:385–491.  https://doi.org/10.1146/annurev.earth.30.091201.141331 CrossRefGoogle Scholar
  4. 4.
    Kristall B, Kelley DS, Hannington MD, Delaney JR (2006) Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study. Geochem. Geophys. Geosyst. 7.  https://doi.org/10.1029/2005GC001166
  5. 5.
    Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66:3798–3806CrossRefGoogle Scholar
  6. 6.
    Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of Mid-Ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, pp 185–213Google Scholar
  7. 7.
    Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol. Ecol. 65:1–14.  https://doi.org/10.1111/j.1574-6941.2008.00502.x CrossRefGoogle Scholar
  8. 8.
    Frank KL (2013) Linking metabolic rates with the diversity and functional capacity of endolithic microbial communities within hydrothermal vent structures. Doctoral dissertation, Harvard UniversityGoogle Scholar
  9. 9.
    Sekar N, Wu C-H, Adams MWW, Ramasamy RP (2017) Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. Biotechnol. Bioeng. 114:1419–1427.  https://doi.org/10.1002/bit.26271 CrossRefGoogle Scholar
  10. 10.
    Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP (2018) Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259:304–311.  https://doi.org/10.1016/j.biortech.2018.03.053 CrossRefGoogle Scholar
  11. 11.
    Yilmazel YD, Zhu X, Kim K-Y, Holmes DE, Logan BE (2018) Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 119:142–149.  https://doi.org/10.1016/j.bioelechem.2017.09.012 CrossRefGoogle Scholar
  12. 12.
    Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew. Chem. Int. Ed. 49:7692–7694.  https://doi.org/10.1002/anie.201003311 CrossRefGoogle Scholar
  13. 13.
    Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl. Biochem. Biotechnol. 39–40:27–40.  https://doi.org/10.1007/BF02918975 CrossRefGoogle Scholar
  14. 14.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  15. 15.
    Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Env Sci 8:513–519.  https://doi.org/10.1039/C4EE03359K CrossRefGoogle Scholar
  16. 16.
    Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295.  https://doi.org/10.1002/celc.201600079 CrossRefGoogle Scholar
  17. 17.
    Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41:7895–7900.  https://doi.org/10.1021/es071740b CrossRefGoogle Scholar
  18. 18.
    Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45:5047–5053.  https://doi.org/10.1021/es104383q CrossRefGoogle Scholar
  19. 19.
    Girguis PR, Holden JF (2012) On the potential for bioenergy and biofuels from hydrothermal vent microbes. Oceanography 25:213–217CrossRefGoogle Scholar
  20. 20.
    Yamamoto M, Nakamura R, Kasaya T, Kumagai H, Suzuki K, Takai K (2017) Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields. Angew. Chem. Int. Ed. 56:5725–5728.  https://doi.org/10.1002/anie.201701768 CrossRefGoogle Scholar
  21. 21.
    Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, le Bris N, Sarradin PM, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216.  https://doi.org/10.1023/A:1004175211848 CrossRefGoogle Scholar
  22. 22.
    Portail M, Olu K, Dubois SF, Escobar-Briones E, Gelinas Y, Menot L, Sarrazin J (2016) Food-web complexity in Guaymas Basin hydrothermal vents and cold seeps. PLoS One 11:e0162263.  https://doi.org/10.1371/journal.pone.0162263 CrossRefGoogle Scholar
  23. 23.
    Sarradin P-M, Cannat M (2014) MOMARSAT2014 cruise, Pourquoi pas ? R/VGoogle Scholar
  24. 24.
    Boileau C, Auria R, Davidson S, Casalot L, Christen P, Liebgott PP, Combet-Blanc Y (2016) Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth. Biotechnol Biofuels 9(269):269.  https://doi.org/10.1186/s13068-016-0678-8 CrossRefGoogle Scholar
  25. 25.
    Zhang L, Kang M, Xu J, Xu J, Shuai Y, Zhou X, Yang Z, Ma K (2016) Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Sci. Rep. 6.  https://doi.org/10.1038/srep25982
  26. 26.
    Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917.  https://doi.org/10.1038/ismej.2010.171 CrossRefGoogle Scholar
  27. 27.
    Michotey V, Guasco S, Boeuf D, Morezzi N, Durieux B, Charpy L, Bonin P (2012) Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. Mar. Pollut. Bull. 65:525–537.  https://doi.org/10.1016/j.marpolbul.2012.01.009 CrossRefGoogle Scholar
  28. 28.
    Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol. Lett. 282:182–187.  https://doi.org/10.1111/j.1574-6968.2008.01119.x CrossRefGoogle Scholar
  29. 29.
    Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic Archaea and Bacteria. Extremophiles 8:357–366.  https://doi.org/10.1007/s00792-004-0396-1 CrossRefGoogle Scholar
  30. 30.
    Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156.  https://doi.org/10.1038/ismej.2008.48 CrossRefGoogle Scholar
  31. 31.
    Fu Q, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Biosci. Biotechnol. Biochem. 79:1200–1206.  https://doi.org/10.1080/09168451.2015.1015952 CrossRefGoogle Scholar
  32. 32.
    Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE (2017) Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour. Technol. 239:82–86.  https://doi.org/10.1016/j.biortech.2017.04.122 CrossRefGoogle Scholar
  33. 33.
    Sutrisno A, Ueda M, Abe Y, Nakazawa M, Miyatake K (2004) A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol. 63:398–406.  https://doi.org/10.1007/s00253-003-1351-2 CrossRefGoogle Scholar
  34. 34.
    Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann. N. Y. Acad. Sci. 1125:1–43.  https://doi.org/10.1196/annals.1419.029 CrossRefGoogle Scholar
  35. 35.
    Dai K, Wen J-L, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ (2017) Electricity production and microbial characterization of thermophilic microbial fuel cells. Bioresour. Technol. 243:512–519.  https://doi.org/10.1016/j.biortech.2017.06.167 CrossRefGoogle Scholar
  36. 36.
    Xu F, Cao F, Kong Q, Zhou LL, Yuan Q, Zhu YJ, Wang Q, du YD, Wang ZD (2018) Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 339:479–486.  https://doi.org/10.1016/j.cej.2018.02.003 CrossRefGoogle Scholar
  37. 37.
    Bertoldo C, Antranikian G (2006) The order Thermococcales. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 69–81CrossRefGoogle Scholar
  38. 38.
    Slobodkin AI, Jeanthon C, L’Haridon S et al (1999) Dissimilatory reduction of Fe(III) by thermophilic Bacteria and Archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr. Microbiol. 39:99–102.  https://doi.org/10.1007/s002849900426 CrossRefGoogle Scholar
  39. 39.
    Slobodkin A, Campbell B, Cary SC, Bonch-Osmolovskaya E, Jeanthon C (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol. Ecol. 36:235–243.  https://doi.org/10.1111/j.1574-6941.2001.tb00844.x Google Scholar
  40. 40.
    Kashefi K, Holmes DE, Reysenbach A-L, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl. Environ. Microbiol. 68:1735–1742.  https://doi.org/10.1128/AEM.68.4.1735-1742.2002 CrossRefGoogle Scholar
  41. 41.
    Manzella MP, Reguera G, Kashefi K (2013) Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism. Appl. Environ. Microbiol. 79:4694–4700.  https://doi.org/10.1128/AEM.01566-13 CrossRefGoogle Scholar
  42. 42.
    Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int. J. Syst. Evol. Microbiol. 51:433–446.  https://doi.org/10.1099/00207713-51-2-433 CrossRefGoogle Scholar
  43. 43.
    Choi Y-J, Jung E-K, Park H-J et al (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull. Kor. Chem. Soc. 25:813–818.  https://doi.org/10.5012/bkcs.2004.25.6.813 CrossRefGoogle Scholar
  44. 44.
    Nimje VR, Chen C-Y, Chen C-C, Jean JS, Reddy AS, Fan CW, Pan KY, Liu HT, Chen JL (2009) Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J. Power Sources 190:258–263.  https://doi.org/10.1016/j.jpowsour.2009.01.019 CrossRefGoogle Scholar
  45. 45.
    Borah D, More S, Yadav RNS (2013) Construction of double chambered microbial fuel cell (MFC) using household materials and Bacillus megaterium isolate from tea garden soil. J. Microbiol. Biotechnol. Food Sci. 3:84–86Google Scholar
  46. 46.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu. Rev. Microbiol. 49:711–745CrossRefGoogle Scholar
  47. 47.
    Jolivet E, L’Haridon S, Corre E et al (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53:847–851.  https://doi.org/10.1099/ijs.0.02503-0 CrossRefGoogle Scholar
  48. 48.
    Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267CrossRefGoogle Scholar
  49. 49.
    Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B (2011) Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl. Microbiol. Biotechnol. 90:827–836.  https://doi.org/10.1007/s00253-011-3188-4 CrossRefGoogle Scholar
  50. 50.
    Legin E, Copinet A, Duchiron F (1998) Production of thermostable amylolytic enzymes by Thermococcus hydrothermalis. Biotechnol. Lett. 20:363–367.  https://doi.org/10.1023/A:1005375213196 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix-Marseille Université, IRD, CNRS, MIO, UM110MarseilleFrance
  2. 2.Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110La GardeFrance
  3. 3.IFREMER, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, IfremerUniversité de Bretagne OccidentalePlouzanéFrance
  4. 4.Campus de Luminy, Bâtiment OCEANOMEDMediterranean Institute of OceanographyMarseille Cedex 09France

Personalised recommendations