Bacterial Community Composition and Diversity Respond to Nutrient Amendment but Not Warming in a Maritime Antarctic Soil

  • Kevin K. NewshamEmail author
  • Binu M. Tripathi
  • Ke Dong
  • Naomichi Yamamoto
  • Jonathan M. Adams
  • David W. Hopkins
Soil Microbiology


A resumption of climate warming in maritime Antarctica, arising from continued greenhouse gas emissions to the atmosphere, is predicted to lead to further expansions of plant populations across the region, with consequent increases in nutrient inputs to soils. Here, we test the main and interactive effects of warming, applied with open top chambers (OTCs), and nutrient amendment with tryptic soy broth (TSB), an artificial growth substrate, on bacterial community composition and diversity using Illumina sequencing of 16S rRNA genes in soil from a field experiment in the southern maritime Antarctic. Substantial effects of TSB application on bacterial communities were identified after 49 months, including reduced diversity, altered phylogenetic community assembly processes, increased Proteobacteria-to-Acidobacteria ratios and significant divergence in community composition, notably increases in the relative abundances of the gram-positive genera Arthrobacter, Paeniglutamicibacter and Planococcus. Contrary to previous observations from other maritime Antarctic field warming experiments, we recorded no effects of warming with OTCs, or interactive effects of OTCs and TSB application, on bacterial community composition or diversity. Based on these findings, we conclude that further warming of the maritime Antarctic is unlikely to influence soil bacterial community composition or diversity directly, but that increased nutrient inputs arising from enhanced plant growth across the region may affect the composition of soil bacterial communities, with possible effects on ecosystem productivity.


Antarctica Bacterial community composition Climate warming Gram-positive and gram-negative bacteria Nutrient inputs Proteobacteria-to-Acidobacteria ratio 



Logistical support was provided by the British Antarctic Survey’s Operations Unit, with Air Unit pilots Alan Meredith, Steve King, Doug Pearson and Ian Potten providing access to Mars Oasis. Adam Clark, Dickie Hall, Sharon Duggan and Paul Dennis provided valuable support. Two anonymous reviewers provided helpful comments. All are gratefully acknowledged.

Funding Information

This research was funded by the British Antarctic Survey’s Long-Term Monitoring and Survey programme, the NERC Antarctic Funding Initiative (grant number NE/D00893X/1) and a National Research Foundation of Korea Grant from the Korean Government (grant number 2018R1C1B6007755).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2019_1373_MOESM1_ESM.pdf (247 kb)
ESM 1 (PDF 246 kb)


  1. 1.
    Adams B et al (2009) The instrumental period. In: Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds) Antarctic Climate Change and the Environment. Scientific Committee on Antarctic Research, Scott Polar Research Institute, Cambridge, pp 183–298Google Scholar
  2. 2.
    Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, Mulvaney R, Deb P (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415CrossRefGoogle Scholar
  3. 3.
    Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res 113:D03103CrossRefGoogle Scholar
  4. 4.
    Bracegirdle TJ, Stephenson DB (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model predictions. Clim Dyn 39:2805–2821CrossRefGoogle Scholar
  5. 5.
    Vaughan DG, Marshall GJ, Connelley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274CrossRefGoogle Scholar
  6. 6.
    Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544CrossRefGoogle Scholar
  7. 7.
    Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alp Res 26:290–296CrossRefGoogle Scholar
  8. 8.
    Royles J, Amesbury MJ, Convey P, Griffiths H, Hodgson DA, Leng MJ, Charman DJ (2013) Plants and soil microbes respond to recent warming on the Antarctic Peninsula. Curr Biol 23:1702–1706CrossRefGoogle Scholar
  9. 9.
    Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186CrossRefGoogle Scholar
  10. 10.
    Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Chang 1:50–53CrossRefGoogle Scholar
  11. 11.
    Hopkins DW, Sparrow AD, Shillam LL, English LC, Dennis PG, Novis P, Elberling B, Gregorich EG, Greenfield LG (2008) Enzymatic activities and microbial communities in an Antarctic dry valley soil: responses to C and N supplementation. Soil Biol Biochem 40:2130–2136CrossRefGoogle Scholar
  12. 12.
    Dennis PG, Sparrow AD, Gregorich EG, Novis PM, Elberling B, Greenfield LG, Hopkins DW (2013) Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil. Antarct Sci 25:55–61CrossRefGoogle Scholar
  13. 13.
    Dennis PG, Newsham KK, Rushton SP, Ord VJ, O’Donnell AG, Hopkins DW (2013) Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil. Soil Biol Biochem 57:248–255CrossRefGoogle Scholar
  14. 14.
    Haack SD, Garchow H, Odelsen DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493Google Scholar
  15. 15.
    Yergeau E, Bokhorst S, Kang S, Zhou J, Greer CW, Aerts R, Kowalchuk GA (2012) Shifts in soil microorganisms in response to warming are consistent across a wide range of Antarctic environments. ISME J 6:692–702CrossRefGoogle Scholar
  16. 16.
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefGoogle Scholar
  17. 17.
    Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188CrossRefGoogle Scholar
  18. 18.
    Sugden DE, Clapperton CM (1981) An ice-shelf moraine, George VI Sound, Antarctica. Ann Glaciol 2:135–141CrossRefGoogle Scholar
  19. 19.
    Rinnan R, Michelsen A, Bååth E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Chang Biol 13:28–39CrossRefGoogle Scholar
  20. 20.
    Convey P, Smith RIL (1997) The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander island, maritime Antarctic. Antarct Sci 9:12–26CrossRefGoogle Scholar
  21. 21.
    Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Le Vesques E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32CrossRefGoogle Scholar
  22. 22.
    Benhua S, Dennis PG, Laudicina VA, Ord VJ, Rushton SP, O’Donnell AG, Newsham KK, Hopkins DW (2014) Biogeochemical responses to nutrient, moisture, and temperature manipulations of soil from Signy Island in the maritime Antarctic. Antarct Sci 26:513–520CrossRefGoogle Scholar
  23. 23.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1CrossRefGoogle Scholar
  24. 24.
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13:31CrossRefGoogle Scholar
  25. 25.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RI, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, vam Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  26. 26.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898CrossRefGoogle Scholar
  27. 27.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefGoogle Scholar
  28. 28.
    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  29. 29.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  30. 30.
    Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:e00073–e00017CrossRefGoogle Scholar
  31. 31.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefGoogle Scholar
  32. 32.
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefGoogle Scholar
  33. 33.
    Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664CrossRefGoogle Scholar
  34. 34.
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079CrossRefGoogle Scholar
  35. 35.
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci U S A 112:E1326–E1332CrossRefGoogle Scholar
  36. 36.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  37. 37.
    Clarke KR, Gorley RN (2006) PRIMERv6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  38. 38.
    Winsley TJ, Snape I, McKinlay J, Stark J, van Dorst JM, Ji M, Ferrari BC, Siciliano SD (2014) The ecological controls on the prevalance of the candidate division TM7 in polar regions. Front Microbiol 5:345CrossRefGoogle Scholar
  39. 39.
    Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451CrossRefGoogle Scholar
  40. 40.
    Christiansen CT, Haugwitz MS, Priemé A, Nielsen CS, Elberling B, Michelsen A, Grogan P, Blok D (2017) Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob Chang Biol 23:406–420CrossRefGoogle Scholar
  41. 41.
    Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857CrossRefGoogle Scholar
  42. 42.
    Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682CrossRefGoogle Scholar
  43. 43.
    Bokhorst S, Huiskes A, Convey P, Sinclair BJ, Lebouvier M, Van de Vijver B, Wall DH (2011) Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol 34:1421–1435CrossRefGoogle Scholar
  44. 44.
    Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315CrossRefGoogle Scholar
  45. 45.
    Dorrepaal E, Toet S, Van Logtestijn RSP, Swart E, Van De Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619CrossRefGoogle Scholar
  46. 46.
    Weedon JT, Kowalchuk GA, Aerts R, Freriks S, Röling WFM, van Bodegom PM (2017) Compositional stability of the bacterial community in a climate-sensitive sub-Arctic peatland. Front Microbiol 8:317CrossRefGoogle Scholar
  47. 47.
    Radujković D, Verbruggen E, Sigurdsson BD, Leblans NIW, Janssens IA, Vicca S, Weedon JT (2018) Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiol Ecol 94.
  48. 48.
    Bockheim JG, Schaefer CEGR (2015) Soils of Ellsworth Land, the Ellsworth Mountains. In: Bockheim JG (ed) The soils of Antarctica. World Soils Book Series. Springer, Switzerland, pp 169–181Google Scholar
  49. 49.
    Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the maritime Antarctic. Soil Biol Biochem 40:1547–1556CrossRefGoogle Scholar
  50. 50.
    Dennis PG, Newsham KK, Rushton SP, O’Donnell AG, Hopkins DW (2019) Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Sci Rep 9:2686. CrossRefGoogle Scholar
  51. 51.
    Chong CW, Silvaraj S, Supramanian Y, Snape I, Tan IKP (2018) Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biol 41:1763–1775CrossRefGoogle Scholar
  52. 52.
    Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004) Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443CrossRefGoogle Scholar
  53. 53.
    Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854CrossRefGoogle Scholar
  54. 54.
    Koyama A, Wallenstein MD, Simpson RT, Moore JC (2014) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front Microbiol 5:516CrossRefGoogle Scholar
  55. 55.
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  56. 56.
    Newsham KK, Pearce DA, Bridge PD (2010) Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol Res 165:523–530CrossRefGoogle Scholar
  57. 57.
    Chong CW, Convey P, Pearce DA, Tan IKP (2012) Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 35:387–399CrossRefGoogle Scholar
  58. 58.
    Shaver G (2005) Daily summary of 10 cm soil temperatures in the Arctic LTER moist acidic experimental plots from 1998 to present, Toolik Lake Field Station, Alaska. Environ Data Initiative. Accessed 12 September 2018
  59. 59.
    Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421CrossRefGoogle Scholar
  60. 60.
    Babalola O, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576CrossRefGoogle Scholar
  61. 61.
    Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747CrossRefGoogle Scholar
  62. 62.
    Solon AJ, Vimercati L, Darcy JL, Arán P, Porazinska D, Dorador C, Farías ME, Schmidt SK (2018) Microbial communities of high-elevation fumaroles, Penitentes, and dry tephra “soils” of the Puna de Atacama volcanic zone. Microb Ecol 76:340–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NERC British Antarctic SurveyCambridgeUK
  2. 2.Korea Polar Research InstituteIncheonRepublic of Korea
  3. 3.Department of Life Science, College of Natural SciencesKyonggi UniversitySuwonRepublic of Korea
  4. 4.Department of Environmental Health SciencesSeoul National UniversitySeoulRepublic of Korea
  5. 5.Institute of Soil ScienceChinese Academy of SciencesNanjingChina
  6. 6.Scotland’s Rural CollegeEdinburghUK

Personalised recommendations