Advertisement

Microbial Ecology

, Volume 78, Issue 4, pp 1014–1029 | Cite as

Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses

  • Abhishek Negi
  • Indira P. SarethyEmail author
Environmental Microbiology

Abstract

Geochemical cycles result in the chemical, physical, and mineralogical modification of rocks, eventually leading to formation of soil. However, when the stones and rocks are a part of historic buildings and monuments, the effects are deleterious. In addition, microorganisms also colonize these monuments over a period of time, resulting in formation of biofilms; their metabolites lead to physical weakening and discoloration of stone eventually. This process, known as biodeterioration, leads to a significant loss of cultural heritage. For formulating effective conservation strategies to prevent biodeterioration and restore monuments, it is important to know which microorganisms are colonizing the substrate and the different energy sources they consume to sustain themselves. With this view in scope, this review focuses on studies that have attempted to understand the process of biodeterioration, the mechanisms by which they colonize and affect the monuments, the techniques used for assessment of biodeterioration, and conservation strategies that aim to preserve the original integrity of the monuments. This review also includes the “omics” technologies that have started playing a large role in elucidating the nature of microorganisms, and how they can play a role in hastening the formulation of effective conservation strategies.

Keywords

Biodeterioration Biofilm Conservation Microorganism Monument Metagenomics 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139PubMedGoogle Scholar
  2. 2.
    Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24:36Google Scholar
  3. 3.
    Crispim C, Gaylarde P, Gaylarde C (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46:79–82PubMedGoogle Scholar
  4. 4.
    Winkler EM (1976) Decay of building stones, the conservation of stone II. In: Rossi-Manaresi R (ed) Proceeding of 2nd International Symposium. Centro per la Conservazione della Sculture all'Aperto, Bologna, pp 27–36Google Scholar
  5. 5.
    Gaylarde C, Gaylarde P (2002) Biodeterioration of historic buildings in Latin America. DBMC 9:171–180Google Scholar
  6. 6.
    Giannantonia D (2008) Molecular characterization of microbial communities fouling concrete infrastructures. Dissertation, Georgia Institute of TechnologyGoogle Scholar
  7. 7.
    Shirakawa M, Gaylarde C, Gaylarde P, John V, Gambale W (2002) Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiol Ecol 39:165–173PubMedGoogle Scholar
  8. 8.
    Sharma K, Lanjewar S (2010) Biodeterioration of ancient monument (Devarbija) of Chhattisgarh by fungi. J Phytol 2(11):47–49Google Scholar
  9. 9.
    Lewicka D, Pfennig A (2013) Abiotic and microbially influenced corrosion on buried iron artefacts. In structural studies, repairs and maintenance of heritage architecture XIII. WIT Trans Built Env 131:379–388Google Scholar
  10. 10.
    Milde K, Sand W, Wolff W, Bock E (1983) Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J. Gen Microbiol 129:1327–1333Google Scholar
  11. 11.
    Sand W, Bock E (1984) Concrete corrosion in the Hamburg sewer system. Environ Technol Lett 5:517–528Google Scholar
  12. 12.
    Sand W, Bock E, White DC (1987) Biotest system for rapid evaluation of concrete resistance to sulfure oxidizing bacteria. Mater Perform 26:14–17Google Scholar
  13. 13.
    Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli gardens (Florence, Italy). J Appl Phycol 12:427–433Google Scholar
  14. 14.
    Videla HA, Guiamet PS, De Saravia SG (2000) Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico. Int Biodeterior Biodegrad 46:335–341Google Scholar
  15. 15.
    Sazanova K, Shchiparev S, Vlasov D (2014) Formation of organic acids by fungi isolated from the surface of stone monuments. Microbiology 83:516–522Google Scholar
  16. 16.
    Gaylarde CC, Rodrıguez CH, Navarro NY, Ortega MB (2012) Microbial biofilms on the sandstone monuments of the Angkor Wat Complex, Cambodia. Curr Microbiol 64:85–92PubMedGoogle Scholar
  17. 17.
    Ortega-Calvo JJ, Naturales R, Saiz-Jiminez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28:165–185Google Scholar
  18. 18.
    Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu I (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Total Environ 364:272–283PubMedGoogle Scholar
  19. 19.
    Macedo M, Miller A, Dionisio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490PubMedGoogle Scholar
  20. 20.
    Li Q, Zhang B, He Z, Yang X (2016) Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS One 11:e0163287PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rios A, Cámara B, García Del Cura MA, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia, Spain. Sci Total Environ 407:1123–1134Google Scholar
  22. 22.
    Farooq M, Hassan M, Gull F (2015) Mycobial deterioration of stone monuments of Dharmarajika, Taxila. J Microbiol Exp 2:36Google Scholar
  23. 23.
    Pepe O, Sanninob L, Palombaa S, Anastasioc M, Blaiottaa G, Villania F, Moschettid G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165:21–32PubMedGoogle Scholar
  24. 24.
    Mihajlovski A, Gabarre A, Seyer D, Bousta F, Martino P (2017) Bacterial diversity on rock surface of the ruined part of a French historic monument: the Chaalis abbey. Int Biodeterior Biodegrad 20:161–169Google Scholar
  25. 25.
    Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegrad 46:319–326Google Scholar
  26. 26.
    Wasserbauer R, Zadák Z, Novotný J (1988) Nitrifying bacteria on the asbestos-cement roofs of stable buildings. Int Biodeterior 24:153–165Google Scholar
  27. 27.
    Gadd G (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643PubMedGoogle Scholar
  28. 28.
    Martino PD (2016) What about biofilms on the surface of stone monuments? Open Conf Proc J 7:14–28Google Scholar
  29. 29.
    Albertano P, Urzì C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman Hypogea. Microb Ecol 38:244–252PubMedGoogle Scholar
  30. 30.
    Donlan R (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890PubMedPubMedCentralGoogle Scholar
  31. 31.
    Allsopp D, Seal K, Gaylarde C (2004) Introduction to biodeterioration, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  32. 32.
    Zammit G, Psaila P, Albertano P (2008) An investigation into biodeterioration caused by microbial communities colonizing artworks in three Maltese Palaeo-Christian Catacombs. Non-destructive testing, microanalysis and preservation in the conservation of cultural and environmental heritage. ISAS International Seminars Ltd, Jerusalem, pp 1–10Google Scholar
  33. 33.
    Suihko ML, Alakomi HL, Gorbushina A, Fortune I, Marquardt J, Saarela M (2007) Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst Appl Microbiol 30:494–508PubMedGoogle Scholar
  34. 34.
    McNamara C, Perry T, Bearce K, Duque G, Mitchell R (2014) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64Google Scholar
  35. 35.
    Gadd G (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedGoogle Scholar
  36. 36.
    Ragon M, Restoux G, Moreira D, Møller AP, Lopez-Garcia P (2011) Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PLoS One 6:e21764PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hughes K, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565PubMedGoogle Scholar
  38. 38.
    Saiz-Jimenez C (1994) Biodeterioration of stone in historic buildings and monuments.  https://doi.org/10.1007/978-1-4757-9450-2_45 Google Scholar
  39. 39.
    Kim MK, Ingremeau F, Zhao A, Bassler B, Stone H (2016) Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol 1:15005PubMedPubMedCentralGoogle Scholar
  40. 40.
    Laiz L, Recio D, Hermosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. Springer, Boston, MA, pp 77–88Google Scholar
  41. 41.
    Gaylarde C, Ribas-Silva M, Warscheid TH (2003) Microbial impact on building materials: an overview. Mater Struct 36:342–352Google Scholar
  42. 42.
    Pitzurraa L, Moronib B, Nocentinia A, Sbaragliaa G, Polib G, Bistonia F (2003) Microbial growth and air pollution in carbonate rock weathering. Int Biodeterior Biodegrad 52:62–68Google Scholar
  43. 43.
    Neaman A, Chorover J, Brantley SL (2005) Implication of the evolution of organic acid moieties for basalt weathering over ecological time. Am J Sci 305:147–185Google Scholar
  44. 44.
    Böke H, Gokturk EH, Caner-Saltik EN, Demirci S (1999) Effect of airborne particle on SO2-calcite reaction. Appl Surf Sci 140:70–82Google Scholar
  45. 45.
    McAlister JJ, Smith BJ, Torok A (2006) Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmos Environ 40:6780–8790Google Scholar
  46. 46.
    Di Bonaventura MP, Del Gallo M, Cacchio P, Ercole C, Lepidi A (1999) Microbial formation of oxalate films on monument surfaces: bioprotection or biodeterioration? Geomicrobiol J 16:55–64Google Scholar
  47. 47.
    Kusumi A, Li X, Katayama Y (2011) Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front Microbiol 2:104PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C. Geochim Cosmochim Acta 52:1521–1530Google Scholar
  49. 49.
    Iler RK (1979) Chemistry of silica: solubility, polimerization, colloid and surface properties, and biochemistry. Wiley Interscience, NewYorkGoogle Scholar
  50. 50.
    Ortega-Morales O, Guezennec J, Hernandez-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr Microbiol 40:81–85PubMedGoogle Scholar
  51. 51.
    Schultze-Lam S, Beveridge TJ (1994) Physicochemical characteristics of the mineral-forming S-layer from the cyanobacterium Synechococcus strain GL24. Appl Environ Microbiol 60:447–453PubMedPubMedCentralGoogle Scholar
  52. 52.
    Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior Biodegrad 26:397–417Google Scholar
  53. 53.
    De la Rosa-García C, Ortega-Morales O, Claire Gaylarde C, Beltrán-García M, Quintana-Owen P, Reyes-Estebanez M (2011) Influence of fungi in the weathering of limestone of Mayan monuments. Rev Mex Micol 33:43–51Google Scholar
  54. 54.
    Bureau of Indian Standard: Specification for oxalic acid, technical and analytical reagent, IS:501–1993Google Scholar
  55. 55.
    Photometric test for quantifying citric acid in human seminal plasma, FP09 I37 R01 A.6, 2016Google Scholar
  56. 56.
    Bureau of Indian Standard: Malic acid, food grade- specification, IS 14124:1994Google Scholar
  57. 57.
    Bureau of Indian Standard: Specification for formic acid, IS:908: 1981Google Scholar
  58. 58.
    JECFA, Propionic acid, ISN No.280, 1998Google Scholar
  59. 59.
    Bureau of Indian Standard: Fumaric acid, food grade-specification, IS 6793: 1996Google Scholar
  60. 60.
    JECFA, Sulfuric acid, ISN No.513, 1976Google Scholar
  61. 61.
    Shaikh Z, Quereshi P (2013) Screening and isolation of organic acid producers from sample of diverse habitats. Int J Curr Microbiol App Sci 2:39–44Google Scholar
  62. 62.
    Takao S (1965) Organic acid production by Basidiomycetes. Appl Microbiol 13:732–737PubMedPubMedCentralGoogle Scholar
  63. 63.
    Hladíková Z, Smetanková J, Greif G, Greifová M (2012) Antimicrobial activity of selected lactic acid cocci and production of organic acids. Acta Chim Slov 5:80–85Google Scholar
  64. 64.
    Nwodo U, Green E, Okoh A (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organic. Microb Ecol 35:213–223PubMedGoogle Scholar
  66. 66.
    Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16PubMedGoogle Scholar
  68. 68.
    Sabater S, Timoner X, Borrego C, Acuna V (2016) Stream biofilm responses to flow intermittency: from cells to ecosystems. Front Environ Sci 4:14Google Scholar
  69. 69.
    Van den Brink J, De Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492PubMedPubMedCentralGoogle Scholar
  70. 70.
    Wilimzig M, Fahrig N, Meyer C, Bock E (1993) Biogene Schwarze Krusten auf Gesteinen. Bautenschutz + Bausanierung 16:22–25Google Scholar
  71. 71.
    Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegradation 46:343–368Google Scholar
  72. 72.
    Butterwick C, Heaney S, Talling J (1982) A comparison of eight methods for estimating the biomass and growth of planktonic algae. Br Phycol J 17:69–79Google Scholar
  73. 73.
    Frank D, Spiegelman G, Davis W, Wagner E, Lyons E, Pace N (2003) Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 41:295–303PubMedPubMedCentralGoogle Scholar
  74. 74.
    Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74PubMedGoogle Scholar
  75. 75.
    Hirsch P, Eckhardt FEW, Palmer Jr R (1995) Method for the study of rock-inhabiting microorganisms—a mini-review. J Microbiol Methods 23:143–167Google Scholar
  76. 76.
    Mohammadi P, Krumbein W (2008) Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 24:27–33Google Scholar
  77. 77.
    Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Methods 45:77–87PubMedGoogle Scholar
  78. 78.
    Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes—a case study. Appl Microbiol Biotechnol 57:776–785PubMedGoogle Scholar
  79. 79.
    Gonzalez J, Saiz-Jimenez C (2004) Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Sep Sci 27:174–180PubMedGoogle Scholar
  80. 80.
    Portillo MC, Gonzalez JM, Saiz-Jimenez C (2008) Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J Appl Microbiol 104:681–691PubMedGoogle Scholar
  81. 81.
    Rahman M, Uddin MS, Sultana R, Moue A, Setu M (2013) Polymerase chain reaction (PCR): a short review. AKMMC J 4:30–36Google Scholar
  82. 82.
    Thompson A, Bench S, Carter B, Zehr J (2013) Chapter Three—Coupling FACS and genomic methods for the characterization of uncultivated symbionts. Methods Enzymol 531:45–60PubMedGoogle Scholar
  83. 83.
    Palla F, Federico C, Russo R, Anello L (2002) Identification of Nocardia restricta in biodegraded sandstone monuments by PCR and nested-PCR DNA amplification. FEMS Microbiol Ecol 39:85–89PubMedGoogle Scholar
  84. 84.
    Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62:287–298PubMedGoogle Scholar
  85. 85.
    Cono V, Urzì C (2003) Fluorescent in situ hybridization applied on samples taken with adhesive tape strips. J Microbiol Methods 55:65–71PubMedGoogle Scholar
  86. 86.
    Ortega-Morales BO, Narvaez-Zapata JA, Schmalenberger A, Dousa-Lopez A, Tebbe CC (2004) Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 1:79–90Google Scholar
  87. 87.
    Crispim A, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9PubMedGoogle Scholar
  88. 88.
    Lu W, Evans H, McColl S, Saunders V (1997) Identification of cyanobacteria by polymorphisms of PCR-amplified ribosomal DNA spacer region. FEMS Microbiol Lett 153:141–149Google Scholar
  89. 89.
    Eskew DL, Caetano-Anolles G, Bassam BJ, Gresshoff PM (1993) DNA amplification fingerprinting of the symbiosis. Plant Mol Biol 21:363–373PubMedGoogle Scholar
  90. 90.
    Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymor phism within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883PubMedPubMedCentralGoogle Scholar
  91. 91.
    Gutarowska B, Celikkol-Aydin S, Bonifay V, Otlewska A, Aydin E, Oldham AL, Brauer JI, Duncan KE, Adamiak J, Sunner JA, Beech IB (2015) Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Front Microbiol 6:979PubMedPubMedCentralGoogle Scholar
  92. 92.
    Adamiak J, Bonifay V, Otlewska A, Sunner JA, Beech IB, Stryszewska T, Kanka S, Oracz J, Żyżelewicz D, Gutarowska B (2017) Untargeted metabolomics approach in halophiles: understanding the biodeterioration process of building materials. Front Microbiol 8:2448PubMedPubMedCentralGoogle Scholar
  93. 93.
    Li Q, Zhang B, Yang X, Ge Q (2018) Deterioration-associated microbiome of stone monuments: structure, variation, and assembly. Appl Environ Microbiol 84:e02680–e02617PubMedPubMedCentralGoogle Scholar
  94. 94.
    Thompson L et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463PubMedPubMedCentralGoogle Scholar
  95. 95.
    Dettmer K, Aronov P, Hammock B (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78PubMedPubMedCentralGoogle Scholar
  96. 96.
    Starostin K, Demidov E, Bryanskaya A, Efimov V, Rozanov A, Peltek S (2015) Identification of Bacillus strains by MALDI TOF MS using geometric approach. Sci Rep 5:16989PubMedPubMedCentralGoogle Scholar
  97. 97.
    Talaiekhozani A, Alaee S, Mohandoss P (2015) Guidelines for quick application of biochemical tests to identify unknown bacteria. AOBR 2(2):65–82Google Scholar
  98. 98.
    Del-Barrio SV, Garcia-Vallès M, Pradell T, Vendrell-Saz M (2002) The red–orange patina developed on a monumental dolostone. Eng Geol 63:31–38Google Scholar
  99. 99.
    Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Wu F, An L, Wang W, Gu JD, Feng H (2015) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao grottoes. Sci Rep 13:7752Google Scholar
  100. 100.
    Viles HA, Cutler NA (2012) Global environmental change and the biology of heritage structures. Glob Chang Biol 18:2406–2418Google Scholar
  101. 101.
    Scheerer S (2008) Microbial biodeterioration of outdoor stone monument. Assessment methods and control strategies. Dissertation, Cardiff University (United Kingdom)Google Scholar
  102. 102.
    Kepner RL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615PubMedPubMedCentralGoogle Scholar
  103. 103.
    McFeters GA, Yu F, Pyle BH, Steward P (1995) Physiological assessment of bacteria using fluorochromes. A review article. J Microbiol Methods 21:1–13PubMedGoogle Scholar
  104. 104.
    Sheppard EP, Gow JA, Georghiou PE (1987) Luciferin-luciferase assay of adenosine triphosphate from bacteria: a comparison of dimethylsulphoxide (DMSO) and acetone with other solvents. Microbios 52:39–49PubMedGoogle Scholar
  105. 105.
    Rakotonirainy MS, Arnold S (2008) Development of a new procedure based on the energy charge measurement using ATP bioluminescence assay for the detection of living mould from graphic documents. Luminescence 23:182–1861PubMedGoogle Scholar
  106. 106.
    Unkovic N, Grbic ML, Stupar M, Vukojevic J, Simic GS, Jelikic A, Stanojevic D (2015) ATP bioluminescence method: tool for rapid screening of organic and microbial contaminants on deteriorated mural paintings. Nat Prod Res 24:1–9Google Scholar
  107. 107.
    Walkera D, McQuillanb J, Taiwoa M, Parksa R, Stentona C, Morganc H, Mowlemb M, Lees M (2017) A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water Res 126:101–110Google Scholar
  108. 108.
    Botes M, de Kwaadsteniet M, Cloete TE (2013) Application of quantitative PCR for the detection of microorganisms in water. Anal Bioanal Chem 405:91–108PubMedGoogle Scholar
  109. 109.
    Zhang Z, Qu Y, Li S, Feng K, Wang S, Cai W, Liang Y, Li H, Xu M, Yin H, Deng Y (2017) Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep 7:4837PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kuhlman KR, Venkat P, La Duc MT, Kuhlman GM, McKay CP (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. J Geophys Res Biogeosci 113(G4):1Google Scholar
  111. 111.
    Perry IV TD, McNamara CJ, Mitchell R (2005) Biodeterioration of stone. National Academy of Sciences. In: Sackler A (ed) Scientific examination of art: modern techniques in conservation and analysis. The National Academies Press, Washington, DC, pp 72–86Google Scholar
  112. 112.
    Ray R, Little B, Wagner P, Hart K (1997) Environmental scanning electron microscopy investigations of biodeterioration. Scanning 19:98–103Google Scholar
  113. 113.
    Pinzari F, Pasquariello G, De Mico A (2006) Biodeterioration of paper: a SEM study of fungal spoilage reproduced under controlled conditions. Macromol Symp 238:57–56Google Scholar
  114. 114.
    Pedrazzani R, Alessandri I, Bontempi E (2006) Study of sulphation of Candoglia marble by means of micro X-ray diffraction experiments. Appl Phys A Mater Sci Process 83:689–694Google Scholar
  115. 115.
    Sparks N, Mann S, Bazylinski D, Lovley D, Jannasch H, Frankel R (1990) Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet Sci Lett 98:14–22Google Scholar
  116. 116.
    Wyroba S, Suski K, Miller K, Bartosiewicz R (2015) Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy. Cell Mol Biol Lett 20:488–509PubMedGoogle Scholar
  117. 117.
    Warscheid TH, Petersen K, Krumbein WE (1988) Effects of cleaning on the distribution of microorganisms on rock surfaces. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration 7. Elsevier Applied Science, London, pp 455–460Google Scholar
  118. 118.
    Anderberg A (2007) Studies of moisture and alkalinity in self-levelling flooring compounds. Dissertation, Lund UniversityGoogle Scholar
  119. 119.
    Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art — tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646PubMedPubMedCentralGoogle Scholar
  120. 120.
    Alum A, Rashid A, Mobasher B, Abbaszadegan M (2008) Cement-based coatings for controlling algal growth in water distribution canals. Cem Concr Compos 30:839–847Google Scholar
  121. 121.
    Vincke E, Wanseelea E, Monteny J, Beeldens B, Belieb N, Taerweb L, Gemertc D, Verstraetea W (2002) Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int Biodeterior Biodegrad 49:283–292Google Scholar
  122. 122.
    Belie De N, Monteny J, Beeldens A, Vincke E, Gemert VD, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34:2223–2236Google Scholar
  123. 123.
    Arino X, Canals A, Gomez-Bolea A, Saiz-Jimenez C (2002) Assessment of the performance of a water-repellent/biocide treatment after 8 years. In: Galan E, Zezza F (eds) Protection and conservation of the cultural heritage of the Mediterranean cities. Balkema, Lisse, pp 121–125Google Scholar
  124. 124.
    Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface depositon stone using biological and chemical remediation methods. Microb Ecol 60:1–14PubMedGoogle Scholar
  125. 125.
    Cennamo P, Caputo P, Giorgio A, Moretti A, Pasquino N (2013) Biofilms on tuff stones at historical sites: identification and removal by nonthermal effects of radiofrequencies. Microb Ecol 66:659–668PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations