Advertisement

Functional Response of MBR Microbial Consortia to Substrate Stress as Revealed by Metaproteomics

  • Carlo SalernoEmail author
  • Giovanni Berardi
  • Giuseppe Laera
  • Alfieri Pollice
Environmental Microbiology
  • 98 Downloads

Abstract

Bacterial consortia have a primary role in the biological degradations occurring in activated sludge for wastewater treatment, for their capacities to metabolize the polluting matter. Therefore, the knowledge of the main metabolic pathways for the degradation of pollutants becomes critical for a correct design and operation of wastewater treatment plants. The metabolic activity of the different bacterial groups in activated sludge is commonly investigated through respirometry. Furthermore, in the last years, the development of “omic” approaches has offered more opportunities to integrate or substitute the conventional microbiological assays and to deeply understand the taxonomy and dynamics of complex microbial consortia. In the present work, an experimental membrane bioreactor (MBR) was set up and operated for the treatment of municipal wastewater, and the effects of a sudden decrease of the organic supply on the activated sludge were investigated. Both respirometric and metaproteomic approaches revealed a resistance of autotrophic bacteria to the substrate stress, and particularly of nitrifying bacteria. Furthermore, metaproteomics allowed the identification of the taxonomy of the microbial consortium based on its protein expression, unveiling the prevalence of Sorangium and Nitrosomonas genera both before and after the organic load decrease. Moreover, it confirmed the results obtained through respirometry and revealed a general expression of proteins involved in metabolism and transport of nitrogen, or belonging to nitrifying species like Nitrosomonas europeae, Nitrosomonas sp. AL212, or Nitrospira defluvii.

Keywords

MBR Metaproteomics Respirometry Proteins Nitrifiers 

Supplementary material

248_2019_1360_MOESM1_ESM.xlsx (69 kb)
ESM 1 All protein affiliations to each spot found against UniProtKB. (XLSX 68 kb)
248_2019_1360_MOESM2_ESM.xlsx (76 kb)
ESM 2 Functional hierarchical taxonomy through Metaproteome Unipept analysis. (XLSX 75 kb)

References

  1. 1.
    Foley J, de Haas D, Hartley K, Lant P (2009) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666.  https://doi.org/10.1016/j.watres.2009.11.031 CrossRefGoogle Scholar
  2. 2.
    Vergine P, Salerno C, Libutti A, Beneduce L, Gatta G, Berardi G, Pollice A (2017) Closing the water cycle in the agro-industrial sector by reusing treated wastewater for irrigation. J Clean Prod 164:587–596.  https://doi.org/10.1016/j.jclepro.2017.06.239 CrossRefGoogle Scholar
  3. 3.
    Vergine P, Lonigro A, Salerno C, Rubino P, Berardi G, Pollice A (2017) Nutrient recovery and crop yield enhancement in irrigation with reclaimed wastewater: a case study. Urban Water J 14(3):325–330.  https://doi.org/10.1080/1573062X.2016.1141224 CrossRefGoogle Scholar
  4. 4.
    Judd S (2011) The MBR book. Elsevier Ltd, AmsterdamGoogle Scholar
  5. 5.
    Rahman MS, Islam MA (2015) A simple cost-effective manometric respirometer: design and application in wastewater biomonitoring. Appl Water Sci 5:241–252.  https://doi.org/10.1007/s13201-014-0185-7 CrossRefGoogle Scholar
  6. 6.
    Marsili-Libelli S, Tabani F (2002) Accuracy analysis of a respirometer for activated sludge dynamic modelling. Water Res 36:1181–1192.  https://doi.org/10.1016/S0043-1354(01)00339-6 CrossRefGoogle Scholar
  7. 7.
    Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KY-H, Thompson JR (2015) Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 6:1027.  https://doi.org/10.3389/fmicb.2015.01027 Google Scholar
  8. 8.
    Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844.  https://doi.org/10.1038/nbt.3935 CrossRefGoogle Scholar
  9. 9.
    Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T, Ivey KL, Drew DA, DuLong C, Rimm E, Izard J, Chan AT, Huttenhower C (2018) Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat Microbiol 3(3):356–366.  https://doi.org/10.1038/s41564-017-0084-4 CrossRefGoogle Scholar
  10. 10.
    Abril N, Ruiz-Laguna J, Osuna-Jiménez I, Vioque-Fernández A, Fernández-Cisnal R, Chicano-Gálvez E, Alhama J, López-Barea J, Pueyo C (2011) Omic approaches in environmental issues. J Toxicol Environ Health A 74(15–16):1001–1019.  https://doi.org/10.1080/15287394.2011.582259 CrossRefGoogle Scholar
  11. 11.
    Crick F (1970) Central dogma of molecular biology. Nature 227:561–563.  https://doi.org/10.1038/227561a0 CrossRefGoogle Scholar
  12. 12.
    Speda J, Jonsson BH, Carlsson U, Karlsson M (2017) Metaproteomics-guided selection of targeted enzymes for bioprospecting of mixed microbial communities. Biotechnol Biofuels 10:128.  https://doi.org/10.1186/s13068-017-0815-z CrossRefGoogle Scholar
  13. 13.
    Lin Y-W, Tuan NN, Huang S-L (2016) Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: a case study. Int Biodeterior Biodegrad 115:64–73.  https://doi.org/10.1016/j.ibiod.2016.06.013 CrossRefGoogle Scholar
  14. 14.
    Zhou Z, Meng F, He X, Chae SR, An Y, Jia X (2015) Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor. Environ Sci Technol 49(2):1068–1077.  https://doi.org/10.1021/es504489r CrossRefGoogle Scholar
  15. 15.
    Salerno C, Benndorf D, Kluge S, Palese LL, Reichl U, Pollice A (2016) Metaproteomics applied to activated sludge for industrial wastewater treatment revealed a dominant methylotrophic metabolism of Hyphomicrobium zavarzinii. Microb Ecol 72(1):9–13.  https://doi.org/10.1007/s00248-016-0769-x CrossRefGoogle Scholar
  16. 16.
    European Commission (1991a) The Urban Waste-water Treatment Directive 91/271/EEC. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN. Accessed 24 July 2018
  17. 17.
    European Commission (1991b) The Nitrates Directive 91/676/EEC. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676&from=en. Accessed 24 July 2018
  18. 18.
    American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005) Standard methods for the examination of water and wastewater21st edn. APHA, Washington DCGoogle Scholar
  19. 19.
    Spanjers H, Vanrolleghem PA, Olsson G, Dold PL (1998) Respirometry in control of the activated sludge process: principles. IAWQ scientific and technical report n.7. IAWQ Publishing, London, p 1998Google Scholar
  20. 20.
    Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49(3):289–307.  https://doi.org/10.1016/j.bej.2010.01.011 CrossRefGoogle Scholar
  21. 21.
    Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417.  https://doi.org/10.1002/pmic.201500183 CrossRefGoogle Scholar
  22. 22.
    Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11:2738–2744.  https://doi.org/10.1002/pmic.201000590 CrossRefGoogle Scholar
  23. 23.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685.  https://doi.org/10.1038/227680a0 CrossRefGoogle Scholar
  24. 24.
    Mesuere B, Van der Jeugt F, Willems T, Naessens T, Devreese B, Martens L, Dawyndt P (2018) High-throughput metaproteomics data analysis with Unipept: a tutorial. J Proteome 171:11–22.  https://doi.org/10.1016/j.jprot.2017.05.022 CrossRefGoogle Scholar
  25. 25.
    Pollice A, Laera G, Saturno D, Giordano C (2008) Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. J Membr Sci 317:65–70.  https://doi.org/10.1016/j.memsci.2007.08.051 CrossRefGoogle Scholar
  26. 26.
    Sato Y, Hori T, Navarro RR, Naganawa R, Habe H, Ogata A (2016) Effects of organic-loading-rate reduction on sludge biomass and microbial community in a deteriorated pilot-scale membrane bioreactor. Microbes Environ 31(3):361–364.  https://doi.org/10.1264/jsme2.ME16015 CrossRefGoogle Scholar
  27. 27.
    Munz G, Mori G, Vannini C, Lubello C (2010) Kinetic parameters and inhibition response of ammonia- and nitrite-oxidizing bacteria in membrane bioreactors and conventional activated sludge processes. Environ Technol 31(14):1557–1564.  https://doi.org/10.1080/09593331003793828 CrossRefGoogle Scholar
  28. 28.
    Zhang J, Zhou J, Liu Y, Fane AG (2010) A comparison of membrane fouling under constant and variable organic loadings in submerge membrane bioreactors. Water Res 44(18):5407–5413.  https://doi.org/10.1016/j.watres.2010.06.045 CrossRefGoogle Scholar
  29. 29.
    Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33(1):22–24.  https://doi.org/10.1038/nbt.3109 CrossRefGoogle Scholar
  30. 30.
    Muth T, Renard BY, Martens L (2016) Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics 13(8):757–769.  https://doi.org/10.1080/14789450.2016.1209418 CrossRefGoogle Scholar
  31. 31.
    Blank C, Easterly C, Gruening B, Johnson J, Kolmeder CA, Kumar P, May D, Mehta S, Mesuere B, Brown Z, Elias JE, Hervey WJ, McGowan T, Muth T, Nunn B, Rudney J, Tanca A, Griffin TJ, Jagtap PD (2018) Disseminating metaproteomic informatics capabilities and knowledge using the galaxy-P framework. Proteomes 31(6):1.  https://doi.org/10.3390/proteomes6010007 Google Scholar
  32. 32.
    Petriz BA, Franco OL (2017) Metaproteomics as a complementary approach to gut microbiota in health and disease. Front Chem 5:4.  https://doi.org/10.3389/fchem.2017.00004 CrossRefGoogle Scholar
  33. 33.
    Fernandez-Lozano C, Seoane JA, Gestal M, Gaunt TR, Dorado J, Pazos A, Campbell C (2016) Texture analysis in gel electrophoresis images using an integrative kernel-based approach. Sci Rep 6:19256.  https://doi.org/10.1038/srep19256 CrossRefGoogle Scholar
  34. 34.
    Huang R, Chen Z, He L, He N, Xi Z, Li Z, Deng Y, Zeng X (2017) Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: approaches and application. Theranostics 7(14):3559–3572.  https://doi.org/10.7150/thno.20797 CrossRefGoogle Scholar
  35. 35.
    Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372.  https://doi.org/10.1038/nrmicro3451 CrossRefGoogle Scholar
  36. 36.
    Hengge-Aronis R (2000) The general stress response in Escherichia coli. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 161–178Google Scholar
  37. 37.
    McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104(18):7600–7605.  https://doi.org/10.1073/pnas.0610456104 CrossRefGoogle Scholar
  38. 38.
    Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2009) Thauera butanivorans sp. nov., a C2–C9 alkane-oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. Int J Syst Evol Microbiol 59(Pt 7):1576–1578.  https://doi.org/10.1099/ijs.0.000638-0 CrossRefGoogle Scholar
  39. 39.
    Vangnai AS, Arp DJ, Sayavedra-Soto LA (2002) Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora. J Bacteriol 184(7):1916–1924.  https://doi.org/10.1128/JB.184.7.1916-1924.2002 CrossRefGoogle Scholar
  40. 40.
    Suwa Y, Norton JM, Bollmann A et al (2011) Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J Bacteriol 193(18):5047–5048.  https://doi.org/10.1128/JB.05521-11 CrossRefGoogle Scholar
  41. 41.
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M, Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci U S A 112(36):11371–11376.  https://doi.org/10.1073/pnas.1506533112 CrossRefGoogle Scholar
  42. 42.
    Nowka B, Daims H, Spieck E (2015) Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol 81(2):745–753.  https://doi.org/10.1128/AEM.02734-14 CrossRefGoogle Scholar
  43. 43.
    Thomsen TR, Kong Y, Nielsen PH (2007) Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiol Ecol 60(3):370–382.  https://doi.org/10.1111/j.1574-6941.2007.00309.x CrossRefGoogle Scholar
  44. 44.
    Kurisu F, Zang K, Kasuga I, Furumai H, Yagi O (2015) Identification of estrone-degrading Betaproteobacteria in activated sludge by microautoradiography fluorescent in situ hybridization. Lett Appl Microbiol 61(1):28–35.  https://doi.org/10.1111/lam.12407 CrossRefGoogle Scholar
  45. 45.
    Tian M, Zhao F, Shen X, Chu K, Wang J, Chen S, Guo Y, Liu H (2015) The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J Environ Sci (China) 35:181–190.  https://doi.org/10.1016/j.jes.2014.12.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRSA CNR, Water Research InstituteBariItaly

Personalised recommendations