Advertisement

Microbial Ecology of Snow Reveals Taxa-Specific Biogeographical Structure

  • Shawn P. BrownEmail author
  • Ari Jumpponen
Environmental Microbiology

Abstract

Snows that persist late into the growing season become colonized with numerous metabolically active microorganisms, yet underlying mechanisms of community assembly and dispersal remain poorly known. We investigated (Illumina MiSeq) snow-borne bacterial, fungal, and algal communities across a latitudinal gradient in Fennoscandia and inter-continental distribution between northern Europe and North America. Our data indicate that bacterial communities are ubiquitous regionally (across Fennoscandia), whereas fungal communities are regionally heterogeneous. Both fungi and bacteria are biogeographically heterogeneous inter-continentally. Snow algae, generally thought to occur in colorful algae blooms (red, green, or yellow) on the snow surface, are molecularly described here as an important component of snows even in absence of visible algal growth. This suggests that snow algae are a previously underestimated major biological component of visually uncolonized snows. In contrast to fungi and bacteria, algae exhibit no discernible inter-continental or regional community structure and exhibit little endemism. These results indicate that global and regional snow microbial communities and their distributions may be dictated by a combination of size-limited propagule dispersal potential and restrictions (bacteria and fungi) and homogenization of ecologically specialized taxa (snow algae) across the globe. These results are among the first to compare inter-continental snow microbial communities and highlight how poorly understood microbial communities in these threatened ephemeral ecosystems are.

Keywords

Snow Snow algae Fungi Bacteria Biogeography Nival microbiology 

Notes

Acknowledgements

We express great thanks to Francesco Gentili (SLU Umeå) for assistance in sample processing, and to Mary Brown, Vera Brown, and Lyndon Brown for assistance in collection of North American samples. We also greatly thank Unto Jumpponen for providing transportation logistical support, and Rauni Strömmer and Martin Romanchuk (University of Helsinki-Lahti) for use of laboratory space. This work was partially funded through an American-Scandinavian Fellowship (SPB), a Kansas Academy of Sciences grant (SPB), and a US Department of Education Graduate Assistance in Areas of National Need (GAANN) training program.

Supplementary material

248_2019_1357_MOESM1_ESM.xlsx (10 kb)
Table S1 Primer and MID sequences used to amplify Eukaryotic (fungal and algal) and bacterial communities. (XLSX 9 kb)
248_2019_1357_MOESM2_ESM.xlsx (16 kb)
Table S2 Summarized breakdown of fungal, bacterial and algal OTU taxonomic distribution presenting OTU counts, sequence counts and percentages of these counts for Phyla and Class taxonomic ranks. (XLSX 16 kb)
248_2019_1357_MOESM3_ESM.xlsx (243 kb)
Table S3 Full taxonomic breakdown of OTUs along with sequence counts and boot strap support for taxonomic ranks for Fungi and Bacteria. Also presented are best BLAST results for select fungi and all algae along with closes GenBank accessions. (XLSX 242 kb)
248_2019_1357_MOESM4_ESM.xlsx (12 kb)
Table S4 Core OTUs (OTUs found in all or all but one sample globally) for Algae, Bacteria, and Fungi along with assigned Genera for these OTUs. See Table S3 for full taxonomic identifications. (XLSX 12 kb)
248_2019_1357_MOESM5_ESM.xlsx (20 kb)
Table S5 Significant Indicator Taxa (based on Indicator Taxa analysis) for Algal, Bacterial, and Fugal OTUs along Indicative Groups (transects from Table 1), Indicator Value, Mean and Standard Deviation from 9999 permutations, and P-values for indicative calls. (XLSX 19 kb)
248_2019_1357_MOESM6_ESM.docx (212 kb)
ESM 6 (DOCX 211 kb)

References

  1. 1.
    Baas Becking LGM (1934) Geobiologie of inleading tot de milieukunde. WP Van Stockum & Zoon, The HagueGoogle Scholar
  2. 2.
    De Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Bass Becking and Beijerinck really say? Environ Microbiol 8:755–758CrossRefGoogle Scholar
  3. 3.
    Christner BC, Morris CE, Foreman CM, Dai R, Sands DC (2008) Ubiquity of biological ices nucleators in snowfall. Science 319:1214CrossRefGoogle Scholar
  4. 4.
    Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR (1974) Ice nucleation induced by Pheudomonas syringae. Appl Environ Microbiol 28:456–459Google Scholar
  5. 5.
    Fujii M, Takano Y, Kojima H, Hoshino T, Tanaka R, Fukui M (2010) Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microb Ecol 59:466–475CrossRefGoogle Scholar
  6. 6.
    Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86CrossRefGoogle Scholar
  7. 7.
    Müller T, Bleiß W, Martin CD, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32CrossRefGoogle Scholar
  8. 8.
    Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacier ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  9. 9.
    Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG (2016) The biogeography of red snow microbiome and their role in melting arctic glaciers. Nat Commun 7:119687.  https://doi.org/10.1038/ncomms11968 CrossRefGoogle Scholar
  10. 10.
    Naff CS, Darcy JL, Schmidt SK (2013) Phylogeny and biogeography of an uncultured clade of snow chytrids. Environ Microbiol 15:2672–2680Google Scholar
  11. 11.
    Brown SP, Olson BJSC, Jumpponen A (2015) Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs? Arct Antarct Alp Res 47:729–749CrossRefGoogle Scholar
  12. 12.
    Whalley JI, Pliny (1982) Pliny the Elder, Historia naturales, Book XI. Victoria and Albert Museum, London, UK.Google Scholar
  13. 13.
    Bauer F (1820) Some experiments on the fungi which constitute the colouring matter of the red snow discovered in Baffin’s bay. Phil Trans R Soc Lond 110:165–173CrossRefGoogle Scholar
  14. 14.
    Clark FC (1875) Red snow. Am Nat 9:129–135CrossRefGoogle Scholar
  15. 15.
    Hersey H (1913) Our friends and our foes of the invisible world: microbes, good and bad. Thomas Y. Crowell Company, New YorkGoogle Scholar
  16. 16.
    McLean AL (1918) Bacteria of ice and snow in Antarctica. Nature 102:35–39CrossRefGoogle Scholar
  17. 17.
    Darcy JL, Lyncy RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes—evidence for a highly successful dispersal capacity. PLoS One 6:e23742.  https://doi.org/10.1371/journal.pone.0023742 CrossRefGoogle Scholar
  18. 18.
    Yan P, Hou S, Chen T, Ma X, Zhang S (2012) Culturable bacterial isolated from snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica. Extremophiles 16:345–354CrossRefGoogle Scholar
  19. 19.
    Larose C, Dommergue A, Vogel TM (2013) The dynamic Arctic snow pack: an unexplored environment for microbial diversity and activity. Biology 2:317–330CrossRefGoogle Scholar
  20. 20.
    Proctor VW (1959) Dispersal of fresh-water algae by migratory water birds. Science 130:623–624CrossRefGoogle Scholar
  21. 21.
    Schlichting HE (1960) The role of waterfowl in the dispersal of algae. Trans Am Microsc Soc 79:160–166CrossRefGoogle Scholar
  22. 22.
    Revill DL, Stewart KW, Schlichting Jr HE (1967) Passive dispersal of viable algae and protozoa by certain craneflies and midges. Ecology 48:1023–1027CrossRefGoogle Scholar
  23. 23.
    Kristiansen J (1996) 16. Dispersal of freshwater algae—a review. Hydrobiologia 336:151–157Google Scholar
  24. 24.
    Novis PM (2001) Ecology and taxonomy of alpine algae, Mt. Philistine, Arthur’s Pass National Park, New Zealand. Dissertation, University of Canterbury, Christchurch, NZGoogle Scholar
  25. 25.
    Marshall WA, Chalmers MO (2006) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594CrossRefGoogle Scholar
  26. 26.
    Harding T, Jungblut AS, Lovejoy C, Vincent WF (2011) Microbes in High Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243CrossRefGoogle Scholar
  27. 27.
    Schneider RW, Hollier CA, Whitam HK et al (2005) First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Dis 89(774336):151–157Google Scholar
  28. 28.
    Duval B, Duval E, Hoham RW (1999) Snow algae of the Sierra Nevada, Spain and High Atlas Mountains of Morocco. Int Microbiol 2:39–42Google Scholar
  29. 29.
    Thomas WH, Broady PA (1997) Distribution of coloured snow and associated algal genera in New Zealand. N Z J Bot 35:113–117CrossRefGoogle Scholar
  30. 30.
    Novis PM, Beer T, Vallance (2008) New records of microalgae from the New Zealand alpine zone, and their distribution and dispersal. N Z J Bot 46:347–366CrossRefGoogle Scholar
  31. 31.
    Novis PM, Visnovsky G (2012) Novel alpine algae from New Zealand: Chlorophyta. Phytotaxa 39:1–30CrossRefGoogle Scholar
  32. 32.
    Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, Yonezawa T, Mori H (2018) Bipolar dispersal of red-snow algae. Nat Commun 9:3094CrossRefGoogle Scholar
  33. 33.
    Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16:415–425CrossRefGoogle Scholar
  34. 34.
    Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I (2012) Modeling the effect of size on the aerial dispersal of microorganisms. J Biogeogr 39:89–97CrossRefGoogle Scholar
  35. 35.
    Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063CrossRefGoogle Scholar
  36. 36.
    Roberts MS, Cohan FM (1995) Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49:1981–1094CrossRefGoogle Scholar
  37. 37.
    Sato K, Tsujino R, Kurita K, Yokoyama K, Agata K (2012) Modeling the global distribution of fungal species: new insights into microbial cosmopolitanism. Mol Ecol 21:5599–1612CrossRefGoogle Scholar
  38. 38.
    Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal dispersal: maroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136CrossRefGoogle Scholar
  39. 39.
    Peay KG, Bruns TD (2014) Spore dispersal of basidiomycetes fungi at the landscape scale is driven my stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol 204:180–191CrossRefGoogle Scholar
  40. 40.
    Brown JKM, Hovmeller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 287:537–541CrossRefGoogle Scholar
  41. 41.
    Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973CrossRefGoogle Scholar
  42. 42.
    Nemergut DR, Costello EK, Hamandy M et al (2010) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13:135–144CrossRefGoogle Scholar
  43. 43.
    Sul WJ, Oliver TA, Ducklow HW, Amaral-Zettler LA, Sogin ML (2013) Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci USA 110:2342–2347CrossRefGoogle Scholar
  44. 44.
    Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, Lawrence MG (2009) Bacteria in the global atmosphere—part 2: modeling of emissions and transport between different ecosystems. Atmos Chem Phys 9:9281–9297CrossRefGoogle Scholar
  45. 45.
    Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280CrossRefGoogle Scholar
  46. 46.
    Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc R Soc B 278:702–708CrossRefGoogle Scholar
  47. 47.
    Brown SP, Ungerer MC, Jumpponen A (2016) A community of clones: snow algae are diverse communities of spatially structured clones. Int J Plant Sci 177:432–439CrossRefGoogle Scholar
  48. 48.
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105:7774–7778CrossRefGoogle Scholar
  49. 49.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631CrossRefGoogle Scholar
  50. 50.
    Yergeau E, Bokhorst S, Huiskes AHL et al (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451CrossRefGoogle Scholar
  51. 51.
    Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354CrossRefGoogle Scholar
  52. 52.
    Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688CrossRefGoogle Scholar
  53. 53.
    Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H (2016) Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front Microbiol 7:773.  https://doi.org/10.3389/fmicb.2016.00773 CrossRefGoogle Scholar
  54. 54.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand NA, Sininsky JJ, White FR (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  55. 55.
    Ihrmark K, Bödeker ITM, Cruz-Martinez K (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677CrossRefGoogle Scholar
  56. 56.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefGoogle Scholar
  57. 57.
    Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497CrossRefGoogle Scholar
  58. 58.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  59. 59.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898CrossRefGoogle Scholar
  60. 60.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefGoogle Scholar
  61. 61.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  62. 62.
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefGoogle Scholar
  63. 63.
    Brown SP, Veach AM, Rigdon-Huss AR et al (2015) Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Funct Ecol 13:221–225CrossRefGoogle Scholar
  64. 64.
    Oliver AK, Brown SP, Callaham MA, Jumpponen A (2015) Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15%. Funct Ecol 15:86–89CrossRefGoogle Scholar
  65. 65.
    McCune B, Mefford JM (1999) PC-ORD: multivariate analysis of ecological data. Version 4. MjM Software, Gleneden BeachGoogle Scholar
  66. 66.
    Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  67. 67.
    Lisboa FJG, Peres-Nets PR, Chaer GM et al (2014) Much beyond Mantel: bringing Procrustes association metric to the plant and soil ecologist’s toolbox. PLoS One 9:e101238.  https://doi.org/10.1371/journal.pone.0101238 CrossRefGoogle Scholar
  68. 68.
    Oksanen J, Blanchet FG, Friendly M et al (2017) Vegan: community ecology package. R Package version 2.4–2. https://CRAN.R-project.org/package=vegan
  69. 69.
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure, and convergent evolution of the global sponge microbiome. Nat Commun 7:11870CrossRefGoogle Scholar
  70. 70.
    Lutz S, McCutcheon J, McQuaid JB, Benning LG (2018) The diversity of ice algae communities on the Greenland Ice Sheet as revealed by oligotyping. Microb Genom 4:e000159.  https://doi.org/10.1099/mgen.0.000159 Google Scholar
  71. 71.
    Hamilton TL, Havig J (2017) Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology 15:280–295CrossRefGoogle Scholar
  72. 72.
    Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687CrossRefGoogle Scholar
  73. 73.
    Hodkinson ID, Coulson SJ, Harrison J, Webb NR (2001) What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic—some counter-intuitive ideas on community assembly. Oikos 95:349–352CrossRefGoogle Scholar
  74. 74.
    Casselton PJ (1966) Chemo-organotrophic growth of xanthophycean algae. New Phytol 65:134–140CrossRefGoogle Scholar
  75. 75.
    Telling J, Boyd ES, Jones EL, Tranter M, MacFarlane JW, Martin PG, Wadham JL, Lamarche-Gagnon G, Skidmore ML, Hamilton TL, Hill E, Jackson M, Hodgson DA (2015) Rock communities as a source of hydrogen for subglacial ecosystems. Nat Geosci 8:851–855CrossRefGoogle Scholar
  76. 76.
    Havig JR, Hamilton TL (2019) Snow algae drive productivity and weathering at volcanic rock-hosted glaciers. Geochim Cosmochim Acta 247:220–242CrossRefGoogle Scholar
  77. 77.
    Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718CrossRefGoogle Scholar
  78. 78.
    Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181CrossRefGoogle Scholar
  79. 79.
    Lambiase A (2014) The family Sphingobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 907–914Google Scholar
  80. 80.
    Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A (2014) The family Oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 919–974CrossRefGoogle Scholar
  81. 81.
    Rosenberg E (2014) The family Chitinophagaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 493–495Google Scholar
  82. 82.
    Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179CrossRefGoogle Scholar
  83. 83.
    Lu S, Chourey K, Reiche M, Nietzsche S, Shah MB, Neu TR, Hettich RL, Kusel K (2013) Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates (iron snow). Apply Environ Microbiol 79:4272–4281CrossRefGoogle Scholar
  84. 84.
    Karpov SA, Kobseva A, Mamkaeva MA et al (2014) Gromochytriales and Mesochytriales (Chytridomycetes). Persoonia 32:115–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesThe University of MemphisMemphisUSA
  2. 2.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations