Advertisement

Edaphic Factors Influence the Distribution of Arbuscular Mycorrhizal Fungi Along an Altitudinal Gradient of a Tropical Mountain

  • Larissa Cardoso VieiraEmail author
  • Danielle Karla Alves da Silva
  • Mayara Alice Correia de Melo
  • Indra Elena Costa Escobar
  • Fritz Oehl
  • Gladstone Alves da Silva
Plant Microbe Interactions
  • 63 Downloads

Abstract

Changes in relief in montane areas, with increasing altitude, provide different biotic and abiotic conditions, acting on the species of arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the influence of altitude, edaphic factors, and vegetation on the AMF species in a mountainous area. The list of AMF species was obtained from morphological identification of the spores, with 72 species recovered from field samples and trap cultures. Lower levels of Shannon’s diversity occurred only at lower altitude; however, there was no difference in AMF richness. The structure of the AMF assembly between the two highest altitudes was similar and differed in relation to the lower altitude. There was variation in the distribution of AMF species, which was related to soil texture and chemical factors along the altitude gradient. Some species, genera, and families were indicative of a certain altitude, showing the preference of fungi for certain environmental conditions, which may aid in decisions to conserve montane ecosystems.

Keywords

Glomeromycota Biodiversity Species richness Mountain ecosystems Rupestrian grassland 

Notes

Funding Information

The Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) provided a scholarship to L.C. Vieira and I.E.C. Escobar and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided scholarships to M.A.C. de Melo, a fellowship and research grant (PQ Proc. 312186/2016-9 and Universal Proc. 458622/2014-1) to G.A. da Silva and a ‘Visiting Professor’ fellowship to Fritz Oehl.

References

  1. 1.
    Fischer A, Blaschke M, Bässler C (2011) Altitudinal gradients in biodiversity research: the state of the art and future perspectives under climate change aspects. Waldokologie Online 11:35–47Google Scholar
  2. 2.
    Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145.  https://doi.org/10.1590/S1676-06032012000100012 CrossRefGoogle Scholar
  3. 3.
    Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends: findings of the condition and trends working Group of the Millennium Ecosystem Assessment. Island Press, Washington, pp 681–716Google Scholar
  4. 4.
    Alonso-Amelot ME (2008) High altitude plants, chemistry of acclimation and adaptation. Stud Nat Prod Chem 34:883–982.  https://doi.org/10.1016/S1572-5995(08)80036-1 CrossRefGoogle Scholar
  5. 5.
    Smith SE, Read DJ (2008) The symbionts forming arbuscular mycorrhizas. In: Smith SE, Read DJ (eds) Mycorrhizal Symbiosis3rd edn. Academic Press, San Diego, pp 13–41CrossRefGoogle Scholar
  6. 6.
    Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science (80- ) 356:1172–1173.  https://doi.org/10.1126/science.aam9970 CrossRefGoogle Scholar
  7. 7.
    Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411.  https://doi.org/10.1016/S0169-5347(00)89157-0
  8. 8.
    Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure - Rillig and Mummey 2006.Pdf. New Phytol 171:41–53.  https://doi.org/10.1111/j.1469-8137.2006.01750.x CrossRefGoogle Scholar
  9. 9.
    Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973.  https://doi.org/10.1126/science.aab1161 CrossRefGoogle Scholar
  10. 10.
    Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10:2341–2351.  https://doi.org/10.1038/ismej.2016.46 CrossRefGoogle Scholar
  11. 11.
    Johnson NC, Miller RM, Wilson GWT (2017) Mycorrhizal interactions with climate, soil parent material, and topography. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Elsevier Inc., Amsterdam, pp 47–66Google Scholar
  12. 12.
    Lugo MA, Negritto MA, Jofré M, Anton A, Galetto L (2012) Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of altitude, host photosynthetic pathway and host life cycles. FEMS Microbiol Ecol 81:455–466.  https://doi.org/10.1111/j.1574-6941.2012.01373.x CrossRefGoogle Scholar
  13. 13.
    Saitta A, Anslan S, Bahram M, Brocca L, Tedersoo L (2018) Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza 28:39–47.  https://doi.org/10.1007/s00572-017-0806-8 CrossRefGoogle Scholar
  14. 14.
    Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G, Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan plateau. Ecol Res 24:1345–1350.  https://doi.org/10.1007/s11284-009-0618-1 CrossRefGoogle Scholar
  15. 15.
    Ranelli LB, Hendricks WQ, Lynn JS, Kivlin SN, Rudgers JA (2015) Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Divers Distrib 21:962–976.  https://doi.org/10.1111/ddi.12310 CrossRefGoogle Scholar
  16. 16.
    Liu L, Hart MM, Zhang J, Cai X, Gai J, Christie P, Li X, Klironomos JN (2015) Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiol Ecol 91.  https://doi.org/10.1093/femsec/fiv078
  17. 17.
    De Carvalho F, de Souza FA, Carrenho R et al (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19.  https://doi.org/10.1016/j.apsoil.2011.10.001 CrossRefGoogle Scholar
  18. 18.
    Gai JP, Tian H, Yang FY, Christie P, Li XL, Klironomos JN (2012) Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia (Jena) 55:145–151.  https://doi.org/10.1016/j.pedobi.2011.12.004 CrossRefGoogle Scholar
  19. 19.
    Shi Z, Wang F, Zhang K, Chen Y (2014) Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in mount Taibai of the Qinling Mountains. Can J Microbiol 60:811–818.  https://doi.org/10.1139/cjm-2014-0416 CrossRefGoogle Scholar
  20. 20.
    Looby CI, Maltz MR, Treseder KK (2016) Belowground responses to elevation in a changing cloud forest. Ecol Evol 6:1996–2009.  https://doi.org/10.1002/ece3.2025 CrossRefGoogle Scholar
  21. 21.
    Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25:627–638.  https://doi.org/10.1007/s00572-015-0636-5 CrossRefGoogle Scholar
  22. 22.
    Bonfim JA, Vasconcellos RLF, Gumiere T, de Lourdes Colombo Mescolotti D, Oehl F, Nogueira Cardoso EJB (2015) Diversity of arbuscular mycorrhizal fungi in a Brazilian Atlantic Forest Toposequence. Mycorrhiza 25:627–638.  https://doi.org/10.1007/s00248-015-0661-0 CrossRefGoogle Scholar
  23. 23.
    Harley RM (1995) Introdução. In: Stannard BL (ed) Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew, pp 43–79Google Scholar
  24. 24.
    Fernandes GW (2016) The megadiverse rupestrian grassland. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Berlin, pp 3–14Google Scholar
  25. 25.
    Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Fernandes Filho EI, Pereira AFS, Brandão PC, Neri AV (2016) The physical environment of rupestrian grasslands (Campos Rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Berlin, pp 15–53Google Scholar
  26. 26.
    Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244.  https://doi.org/10.1016/S0007-1536(63)80079-0 CrossRefGoogle Scholar
  27. 27.
    Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692Google Scholar
  28. 28.
    Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3o. Synergistic Publications, GainesvilleGoogle Scholar
  29. 29.
    Blaszkowski J (2012) Glomeromycota. Polish Academy of Sciences, KrakowGoogle Scholar
  30. 30.
    Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366.  https://doi.org/10.1890/0012-9615 Google Scholar
  31. 31.
    Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, PlymouthGoogle Scholar
  32. 32.
    Team RC (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  33. 33.
    Embrapa (2011) Manual de métodos de análise de solos. Embrapa Solos, Rio de JaneiroGoogle Scholar
  34. 34.
    Vieira LC, da Silva DKA, da Silva IR, Gonçalves CM, de Assis DMA, Oehl F, da Silva GA (2019) Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecol Res 34:182–192.  https://doi.org/10.1111/1440-1703.1061 CrossRefGoogle Scholar
  35. 35.
    Goto BT, Jobim K (2018) Laboratório de Biologia de Micorrizas. http://glomeromycota.wixsite.com/lbmicorrizas. Accessed 9 Nov 2018
  36. 36.
    de Souza F, Stürmer SL, Carrenho R, Trufem SFB (2010) Classificação e taxonomia de fungos micorrízicos arbusculares e sua diversidade e ocorrência no Brasil. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de pesquisas no Brasil. UFLA, LavrasGoogle Scholar
  37. 37.
    Mello CMA, Sivla GA, Assis DM et al (2013) Paraglomus pernambucanum sp. nov. and Paraglomus bolivianum comb. nov., and biogeographic distribution of Paraglomus and Pacispora. J Appl Bot Food Qual 86:113–125.  https://doi.org/10.5073/JABFQ.2013.086.016
  38. 38.
    Marinho F, da Silva IR, Oehl F, Maia LC (2018) Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia 70:107–127.  https://doi.org/10.12905/0380.sydowia70-2018-0107 Google Scholar
  39. 39.
    Chaudhary VB, Cuenca G, Johnson NC (2018) Tropical-temperate comparison of landscape-scale arbuscular mycorrhizal fungal species distributions. Divers Distrib 24:116–128.  https://doi.org/10.1111/ddi.12664 CrossRefGoogle Scholar
  40. 40.
    Lekberg Y, Koide RT, Rohr JR et al (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105.  https://doi.org/10.1111/j.1365-2745.2006.01193.x CrossRefGoogle Scholar
  41. 41.
    Bainard LD, Dai M, Gomez EF, Torres-Arias Y, Bainard JD, Sheng M, Eilers W, Hamel C (2015) Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the Chernozem great groups of the Canadian prairies. Plant Soil 387:351–362.  https://doi.org/10.1007/s11104-014-2288-1 CrossRefGoogle Scholar
  42. 42.
    Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). J Exp Bot 60:2465–2480.  https://doi.org/10.1093/jxb/erp144 CrossRefGoogle Scholar
  43. 43.
    Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364.  https://doi.org/10.1111/j.1469-8137.2004.01169.x CrossRefGoogle Scholar
  44. 44.
    Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303.  https://doi.org/10.1016/j.soilbio.2011.07.012 CrossRefGoogle Scholar
  45. 45.
    Kivlin SN, Lynn JS, Kazenel MR, Beals KK, Rudgers JA (2017) Biogeography of plant-associated fungal symbionts in mountain ecosystems: a meta-analysis. Divers Distrib 23:1067–1077.  https://doi.org/10.1111/ddi.12595 CrossRefGoogle Scholar
  46. 46.
    Conceição AA, Rapini A, Pirani JR et al (2005) Campos rupestres. In: Juncá FA, Funch L, Rocha W (eds) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 153–180Google Scholar
  47. 47.
    Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491.  https://doi.org/10.1016/j.tplants.2013.05.001 CrossRefGoogle Scholar
  48. 48.
    Oehl F, Sýkorová Z, Redecker D et al (2006) Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 98:286–294.  https://doi.org/10.3852/mycologia.98.2.286
  49. 49.
    Oehl F, Palenzuela J, Sánchez-Castro I, Kuss P, Sieverding E, Silva GA (2012) Acaulospora nivalis, a new fungus in the Glomeromycetes, characteristic for high alpine and nival altitudes of the Swiss Alps. Nova Hedwigia 95:105–121.  https://doi.org/10.1127/0029-5035/2012/0038
  50. 50.
    Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils 53:777–797.  https://doi.org/10.1007/s00374-017-1217-x CrossRefGoogle Scholar
  51. 51.
    Li X, Xu M, Christie P, Li X, Zhang J (2018) Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan plateau. Mycorrhiza 28:605–619.  https://doi.org/10.1007/s00572-018-0850-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Larissa Cardoso Vieira
    • 1
    Email author
  • Danielle Karla Alves da Silva
    • 2
  • Mayara Alice Correia de Melo
    • 1
  • Indra Elena Costa Escobar
    • 1
  • Fritz Oehl
    • 3
  • Gladstone Alves da Silva
    • 1
  1. 1.Departamento de Micologia, Laboratório de MicorrizasUniversidade Federal de PernambucoPernambucoBrazil
  2. 2.Centro de Ciências Aplicadas e Educação, Campus IV, Departamento de Engenharia e Meio AmbienteUniversidade Federal da ParaíbaRio TintoBrazil
  3. 3.Agroscope, Competence Division for Plants and Plant Products, EcotoxicologyWädenswilSwitzerland

Personalised recommendations