Bacterial Community of the Digestive Tract of the European Medicinal Leech (Hirudo verbana) from the Danube River

  • Saraswoti Neupane
  • David Modry
  • Barbora Pafčo
  • Ludek ZurekEmail author
Invertebrate Microbiology


The digestive tract of medicinal leeches from commercial suppliers has been investigated previously and comprises of a relatively simple bacterial community. However, the microbiome of medicinal leeches collected directly from the natural habitat has not been examined. In this study, we characterized the bacterial community in the digestive tract (anterior crop, posterior crop, and intestine) of the European medicinal leech, Hirudo verbana, collected from the Danube river using culture-independent and culture-dependent approaches. Culture-independent approach confirmed that the digestive tract of H. verbana carries a relatively simple bacterial community with species richness in the individual samples ranging from 43 to164. The dominant bacterial taxon was Mucinivorans sp. (49.7% of total reads), followed by Aeromonas sp. (18.7% of total reads). Several low abundance taxa, new for H. verbana, such as Phreatobacter, Taibaiella, Fluviicola, Aquabacterium, Burkholderia, Hydrogenophaga, Wolinella, and unidentified Chitinophagia, were also detected. The aerobic culturing approach showed Aeromonas veronii (Proteobacteria), the known leech symbiont, as the most dominant taxon followed by several Pseudomonas and Acidovorax spp. No significant differences in the bacterial community composition were detected among different parts of the digestive tract of individual leeches. However, the overall composition of the bacterial community among individual specimen varied significantly and this is possibly due to differences in leech age, feeding status, and blood source. Our results showed that the core bacterial community of H. verbana collected from the natural habitat is similar to that reported from the digestive tract of commercially supplied leeches maintained in the laboratory.


Medicinal leech Hirudo verbana Digestive tract Bacterial community 16S rDNA 



We thank Prof. Alois Cizek for allowing us to use the MALDI-TOF MS analyzer.

Supplementary material

248_2019_1349_MOESM1_ESM.docx (3.8 mb)
ESM 1 (DOCX 3880 kb)


  1. 1.
    de Chalain TM (1996) Exploring the use of the medicinal leech: a clinical risk-benefit analysis. J Reconstr Microsurg 12:165–172CrossRefPubMedGoogle Scholar
  2. 2.
    Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudomedicinalis. Proc R Soc B 274:1481–1487CrossRefPubMedGoogle Scholar
  3. 3.
    Utevsky S, Zagmajster M, Atemasov A, Zinenko O, Utevska O, Utevsky A, Trontelj P (2010) Distribution and status of medicinal leeches (genus Hirudo) in the Western Palaearctic: anthropogenic, ecological, or historical effects? Aquat Conserv Mar Freshwat Ecosyst 20:198–210CrossRefGoogle Scholar
  4. 4.
    Elliott JM, Tullett PA (1984) The status of the medicinal leech Hirudo medicinalis in Europe and especially in the British Isles. Biol Conserv 29:15–26CrossRefGoogle Scholar
  5. 5.
    Kikuchi Y, Graf J (2007) Spatial and temporal population dynamics of a naturally occurring two species microbial community inside the digestive tract of the medicinal leech. Appl Environ Microbiol 73:1984–1991CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Laufer AS, Siddall ME, Graf J (2008) Characterization of the digestive-tract microbiota of Hirudo orientalis, a European medicinal leech. Appl Environ Microbiol 74:6151–6154CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maltz MA, Bomer L, Lapierre P, Morrison HG, McClure EA, Sogin ML, Graf J (2014) Metagenomic analysis of the medicinal leech gut microbiota. Front Microbiol 5:151CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Worthen PL, Gode CJ, Graf J (2006) Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl Environ Microbiol 72:4775–4781CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nelson MC, Bomar L, Maltz M, Graf J (2015) Mucinivorans hirudinis gen. nov., sp. nov., an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 65:990–995CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ott BM, Rickards A, Gehrke L, Rio RVM (2014) Characterization of shed medicinal leech mucus reveals a diverse microbiota. Front Microbiol 5:757PubMedGoogle Scholar
  11. 11.
    Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338CrossRefPubMedGoogle Scholar
  12. 12.
    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  14. 14.
    Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, Engstrand L, Andersson AF (2014) DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 80:5116–5123CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRefPubMedGoogle Scholar
  17. 17.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignment and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefPubMedGoogle Scholar
  19. 19.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R Package Vegan Version 2.3–0. (
  20. 20.
    R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (
  21. 21.
    Graf J (1999) Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect Immun 67:1–7PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tasiemski A, Massol F, Cuvillier-Hot V, Boidin-Wichlacz C, Roger E, Rodet F, Fournier I, Thomas F, Salzet M (2015) Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii. Sci Rep 5:17498CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012–e00011. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Evol Microbiol 49:769–777Google Scholar
  25. 25.
    Lin S-Y, Hameed A, Wen C-Z, Hsu Y-H, Liu Y-C, Lai WA, Young CC (2017) Hydrogenophaga aquatica sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 67:3716–3721CrossRefPubMedGoogle Scholar
  26. 26.
    Tan X, Zhang R-G, Meng T-Y, Liang H-Z, Lv J (2014) Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64:1795–1801CrossRefPubMedGoogle Scholar
  27. 27.
    Ali Z, Cousin S, Frühling A, Brambilla E, Schumann P et al (2009) Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int J Syst Evol Microbiol l59:2610–2617CrossRefGoogle Scholar
  28. 28.
    O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2005) Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaceae in the phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 55:2189–2194CrossRefPubMedGoogle Scholar
  29. 29.
    Yun JH, Roh SW, Whon TW, Jung M-J, Kim M-S, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insects gut bacterial diversity determined by host environmental habitat, diet, developmental stage and phylogeny. Appl Environ Microbiol 80:5254–5264CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EntomologyKansas State UniversityManhattanUSA
  2. 2.Department of Pathology and ParasitologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  3. 3.Central European Institute of TechnologyBrnoCzech Republic

Personalised recommendations