Advertisement

Detection of MRSA of Lineages CC130-mecC and CC398-mecA and Staphylococcus delphini-lnu(A) in Magpies and Cinereous Vultures in Spain

  • Laura Ruiz-Ripa
  • Paula Gómez
  • Carla Andrea Alonso
  • Maria Cruz Camacho
  • Javier de la Puente
  • Rosa Fernández-Fernández
  • Yolanda Ramiro
  • Miguel Angel Quevedo
  • Juan Manuel Blanco
  • Myriam Zarazaga
  • Ursula Höfle
  • Carmen TorresEmail author
Environmental Microbiology

Abstract

The aim of this study was to determine the carriage rate of coagulase-positive staphylococci (CoPS) in wild birds and to characterize recovered isolates. Tracheal samples from 324 wild birds, obtained in different Spanish regions during 2015–2016, were screened for CoPS carriage. The antimicrobial resistance profile and the virulence gene content were investigated. Molecular typing was performed by spa, agr, MLST, SCCmec, and S. delphini group classification. CoPS were recovered from 26 samples of wild birds (8.3%), and 27 isolates were further characterized. Two CoPS species were detected: S. aureus (n = 15; eight cinereous vultures and seven magpies) and S. delphini (n = 12; 11 cinereous vultures and one red kite). Thirteen S. aureus were methicillin-resistant (MRSA) and the remaining two strains were methicillin-susceptible (MSSA). Twelve MRSA were mecC-positive, typed as t843-ST1583/ST1945/ST1581/ST1571 (n = 11) and t1535-ST1945 (n = 1) (all of clonal-complex CC130); they were susceptible to the non-β-lactams tested. The remaining MRSA strain carried the mecA gene, was typed as t011-ST398-CC398-agrI-SCCmec-V, and showed a multiresistance phenotype. MSSA isolates were ascribed to lineages ST97-CC97 and ST425-CC425. All S. aureus lacked the studied virulence genes (lukS/F-PV, tst, eta, etb, and etd), and the IEC type E (with scn and sak genes) was detected in four mecC-positive and one MSSA isolates. S. delphini strains were methicillin-susceptible but showed resistance to at least one of the antimicrobials tested, with high penicillin (75%, with blaZ gene) and tetracycline [58%, with tet(K)± tet(L)] resistance rates. All S. delphini isolates presented the virulence genes lukS-I, siet, and se-int, and four carried the clindamycin-resistance lnu(A) gene.

Keywords

Wild birds CoPS S. aureus mecC-MRSA mecA-MRSA S. delphini 

Notes

Acknowledgements

These results were presented as oral exposition at the 27th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Vienna, April 2017. This work was supported by project SAF2016-76571-R from the Ministerio de Economía y Competitividad (MINECO) of Spain and FEDER. Laura Ruiz-Ripa has a pre-doctoral fellowship from the Universidad de La Rioja (Spain). We appreciate the contribution of Manuel Alcántara of the Gobierno de Aragón (Spain) for facilitating sample collection. They are also a contribution to the Life12 Nat/ES/00322 for the recovery of the bearded vulture in the Picos de Europa mountains. Authors gratefully acknowledge Sierra de Guadarrama National Park for financial support in the monitoring of the black vulture colony Alto Lozoya, SEO/BirdLife for coordination of these works and forest agents for their help during field works and sampling.

Supplementary material

248_2019_1328_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 50 kb)

References

  1. 1.
    Bergeron M, Dauwalder O, Gouy M, Freydiere A, Bes M, Meugnier H, Benito Y, Etienne J, Lina G, Vandenesch F, Boisset S (2011) Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis. 30:343–354.  https://doi.org/10.1007/s10096-010-1091-z CrossRefPubMedGoogle Scholar
  2. 2.
    Paterson GK, Harrison EM, Holmes MA (2014) The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22:42–47.  https://doi.org/10.1016/j.tim.2013.11.003 CrossRefPubMedGoogle Scholar
  3. 3.
    García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011) Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11:595–603.  https://doi.org/10.1016/S1473-3099(11)70126-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Varaldo PE, Kilpper-Balz R, Biavasco F, Satta G, Schleifer KH (1988) Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins. Int. J. Syst. Bacteriol. 38:436–439CrossRefGoogle Scholar
  5. 5.
    Savini V, Passeri C, Mancini G, Iuliani O, Marrollo R, Argentieri AV, Fazii P, D'Antonio D, Carretto E (2013) Coagulase-positive staphylococci: my pet’s two faces. Res. Microbiol. 164:371–374.  https://doi.org/10.1016/j.resmic.2013.02.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K (2007) Reclassification of phenotypically identified Staphylococcus intermedius strains. J. Clin. Microbiol. 45:2770–2778.  https://doi.org/10.1128/JCM.00360-07 CrossRefPubMedGoogle Scholar
  7. 7.
    Gary JM, Langohr IM, Lim A, Bolin S, Bolin C, Moore I, Kiupel M (2014) Enteric colonization by Staphylococcus delphini in four ferret kits with diarrhoea. J. Comp. Pathol. 151:314–317.  https://doi.org/10.1016/j.jcpa.2014.08.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Guardabassi L, Schmidt KR, Petersen TS, Espinosa-Gongora C, Moodley A, Agersø Y, Olsen JE (2012) Mustelidae are natural hosts of Staphylococcus delphini group a. Vet. Microbiol. 159:351–353.  https://doi.org/10.1016/j.vetmic.2012.04.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Kizerwetter-Swida M, Chrobak-Chmiel D, Rzewuska M, Antosiewicz A, Dolka B, Ledwoń A, Czujkowska A, Binek M (2015) Genetic characterization of coagulase-positive staphylococci isolated from healthy pigeons. Pol. J. Vet. Sci. 18:627–634.  https://doi.org/10.1515/pjvs-2015-0081 CrossRefPubMedGoogle Scholar
  10. 10.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259.  https://doi.org/10.1038/nrmicro2312 CrossRefPubMedGoogle Scholar
  11. 11.
    EUCAST (2017) European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. Version 71 7.1:1–94Google Scholar
  12. 12.
    CA-SFM (2017) Comité de l’Antibiogramme de la Société Française de Microbiologie Recommandations. Edition Mars 2017Google Scholar
  13. 13.
    Van Wamel WJ, Rooijakkers SH, Ruyken M, Van Kessel KP, Van Strijp JA (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on ß-hemolysin-converting bacteriophages. J. Bacteriol. 188:1310–1315.  https://doi.org/10.1128/JB.188.4.1310-1315.2006 CrossRefPubMedGoogle Scholar
  14. 14.
    Araujo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv. Biol. 21:1423–1432.  https://doi.org/10.1111/j.1523-1739.2007.00827.x CrossRefPubMedGoogle Scholar
  15. 15.
    Cortazar C, Ruiz-Fons F, Höfle U (2016) Infections shared with wildlife: an updated perspective. Eur J Wildl Dis 62:511–525CrossRefGoogle Scholar
  16. 16.
    Sousa M, Silva N, Igrejas G, Silva F, Sargo R, Alegria N, Benito D, Gómez P, Lozano C, Gómez-Sanz E, Torres C, Caniça M, Poeta P (2014) Antimicrobial resistance determinants in Staphylococcus spp. recovered from birds of prey in Portugal. Vet. Microbiol. 171:436–440.  https://doi.org/10.1016/j.vetmic.2014.02.034 CrossRefPubMedGoogle Scholar
  17. 17.
    Porrero MC, Mentaberre G, Sánchez S, Fernández-Llario P, Gómez-Barrero S, Navarro-González N, Serrano E, Casas-Díaz E, Marco I, Fernández-Garayzabal JF, Mateos A, Vidal D, Lavín S, Domínguez L (2013) Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Vet. J. 198:127–130.  https://doi.org/10.1016/j.tvjl.2013.06.004 CrossRefPubMedGoogle Scholar
  18. 18.
    Porrero MC, Mentaberre G, Sánchez S, Fernández-Llario P, Casas-Díaz E, Mateos A, Vidal D, Lavín S, Fernández-Garayzábal JF, Domínguez L (2014) Carriage of Staphylococcus aureus by free-living wild animals in Spain. Appl. Environ. Microbiol. 80:4865–4870.  https://doi.org/10.1128/AEM.00647-14 CrossRefPubMedGoogle Scholar
  19. 19.
    Gómez P, Lozano C, Camacho MC, Lima-Barbero JF, Hernández JM, Zarazaga M, Höfle U, Torres C (2016) Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 71:53–57.  https://doi.org/10.1093/jac/dkv314 CrossRefPubMedGoogle Scholar
  20. 20.
    Gómez P, González-Barrio D, Benito D, García JT, Viñuela J, Zarazaga M, Ruiz-Fons F, Torres C (2014) Detection of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in wild small mammals in Spain. J. Antimicrob. Chemother. 69:2061–2064.  https://doi.org/10.1093/jac/dku100 CrossRefPubMedGoogle Scholar
  21. 21.
    Donázar JA, Margalida A, Carrete A, Sánchez-Zapata JA (2009) Too sanitary for vultures. Science 326:664.  https://doi.org/10.1126/science.326_664a CrossRefPubMedGoogle Scholar
  22. 22.
    Gómez P, Lozano C, González-Barrio D, Zarazaga M, Ruiz-Fons F, Torres C (2015) High prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in a semi-extensive red deer (Cervus elaphus hispanicus) farm in southern Spain. Vet. Microbiol. 177:326–331.  https://doi.org/10.1016/j.vetmic.2015.03.029 CrossRefPubMedGoogle Scholar
  23. 23.
    Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3. pii: e00305-e00311 3.  https://doi.org/10.1128/mBio.00305-11
  24. 24.
    Benito D, Gómez P, Lozano C, Estepa V, Gómez-Sanz E, Zarazaga M, Torres C (2014) Genetic lineages, antimicrobial resistance, and virulence in Staphylococcus aureus of meat samples in Spain: analysis of immune evasion cluster (IEC) genes. Foodborne Pathog. Dis. 11:354–356.  https://doi.org/10.1089/fpd.2013.1689 CrossRefPubMedGoogle Scholar
  25. 25.
    Rüegsegger F, Corti S, Sihto HM, Johler S (2014) Toxic bovine mastitis caused by Staphylococcus aureus in twin cows. Schweiz. Arch. Tierheilkd. 156:539–542.  https://doi.org/10.1024/0036-7281/a000644 CrossRefPubMedGoogle Scholar
  26. 26.
    Mitra SD, Velu D, Bhuvana M, Krithiga N, Banerjee A, Shome R, Rahman H, Ghosh SK, Shome BR (2013) Staphylococcus aureus spa type t267, clonal ancestor of bovine subclinical mastitis in India. J. Appl. Microbiol. 114:1604–1615.  https://doi.org/10.1111/jam.12186 CrossRefPubMedGoogle Scholar
  27. 27.
    Stull JW, Slavic D, Rousseau J, Weese JS (2014) Staphylococcus delphini and methicillin-resistant S. pseudintermedius in horses, Canada. Emerg. Infect. Dis. 20:485–487.  https://doi.org/10.3201/eid2003.130139 CrossRefPubMedGoogle Scholar
  28. 28.
    Gharsa H, Slama KB, Gómez-Sanz E, Gómez P, Klibi N, Zarazaga M, Boudabous A, Torres C (2015) Characterisation of nasal Staphylococcus delphini and Staphylococcus pseudintermedius isolates from healthy donkeys in Tunisia. Equine Vet. J. 47:463–466.  https://doi.org/10.1111/evj.12305 CrossRefPubMedGoogle Scholar
  29. 29.
    Nowakiewicz A, Ziólkowska G, Zieba P, Gnat S, Wojtanowicz-Markiewicz K, Troscianczyk A (2016) Coagulase-positive Staphylococcus isolated from wildlife: identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comp. Immunol. Microbiol. Infect. Dis. 44:21–28.  https://doi.org/10.1016/j.cimid.2015.11.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Nikolaisen NK, Lassen DCK, Chriél M, Larsen G, Jensen VF, Pedersen K (2017) Antimicrobial resistance among pathogenic bacteria from mink (Neovison vison) in Denmark. Acta Vet. Scand. 59(60):60.  https://doi.org/10.1186/s13028-017-0328-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G, Gómez-Sanz E, Ruiz-Larrea F, Zarazaga M, Torres C (2012) Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. J. Antimicrob. Chemother. 67:2804–2808.  https://doi.org/10.1093/jac/dks320 CrossRefPubMedGoogle Scholar
  32. 32.
    Lüthje P, von Köckritz-Blickwede M, Schwarz S (2007) Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A). J. Antimicrob. Chemother. 59:600–606.  https://doi.org/10.1093/jac/dkm008 CrossRefPubMedGoogle Scholar
  33. 33.
    Kehrenberg C, Schwarz S (2006) Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 50:1156–1163.  https://doi.org/10.1128/AAC.50.4.1156-1163.2006 CrossRefPubMedGoogle Scholar
  34. 34.
    Börjesson S, Gómez-Sanz E, Ekström K, Torres C, Grönlund U (2015) Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. Infect. Dis. 34:839–844.  https://doi.org/10.1007/s10096-014-2300-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Laura Ruiz-Ripa
    • 1
  • Paula Gómez
    • 1
  • Carla Andrea Alonso
    • 1
  • Maria Cruz Camacho
    • 2
  • Javier de la Puente
    • 3
    • 4
  • Rosa Fernández-Fernández
    • 1
  • Yolanda Ramiro
    • 2
  • Miguel Angel Quevedo
    • 5
  • Juan Manuel Blanco
    • 6
  • Myriam Zarazaga
    • 1
  • Ursula Höfle
    • 2
  • Carmen Torres
    • 1
    Email author
  1. 1.Área de Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain
  2. 2.Grupo SaBioInstituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad RealSpain
  3. 3.SEO/BirdLife, Bird Monitoring UnitMadridSpain
  4. 4.Parque Nacional de la Sierra de Guadarrama, Centro de Investigación, Seguimiento y EvaluaciónMadridSpain
  5. 5.Zoobotánico JerezJerez de la FronteraSpain
  6. 6.Aquila FoundationOropesaSpain

Personalised recommendations