Advertisement

Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean

  • Xiaomin Xia
  • Shunyuan Cheung
  • Hisashi Endo
  • Koji SuzukiEmail author
  • Hongbin LiuEmail author
Microbiology of Aquatic Systems

Abstract

Synechococcus is one of the most widely distributed and abundant picocyanobacteria in the global oceans. Although latitudinal variation of Synechococcus assemblage in marine surface waters has been observed, few studies compared Synechococcus assemblage composition in surface and subsurface waters at the basin scale. Here, we report marine Synechococcus diversity in the surface and deep chlorophyll maximum (DCM) layers along 170° W from the South Pacific to the Arctic Ocean in summer. Along the transect, spatial niche partitioning of Synechococcus lineages in the surface waters was clearly observed. Species richness of surface Synechococcus assemblage was positively correlated with water temperature. Clade CRD1 was dominant in the areas (15° S–10° N and 35–40° N) associated with upwelling, and there were 3 different subclades with distinct distribution. CRD1-A was restricted in the North Equatorial Current (5–10° N), CRD1-B dominated in the equatorial upwelling region (15° S–0.17° N), and CRD1-C was only distributed in the North Pacific Current (35–40° N). Similarities between the Synechococcus assemblages in the surface and DCM layers were high at the upwelling regions and areas where the mixed layer was deep, while low in the Subtropical Gyres with strong stratification. Clade I, CRD1-B, and CRD1-C were major Synechococcus lineages in the DCM layer. In particular, clade I, which is composed of 7 subclades with distinct thermal niches, was widely distributed in the DCM layer. Overall, our results provide new insights into not only the latitudinal distribution of Synechococcus assemblages, but also their vertical variation in the central Pacific.

Keywords

Horizontal and vertical variations Synechococcus assemblage richness CRD1 Clade I Central Pacific Ocean 

Notes

Acknowledgments

We wish to thank the captain, officers, and crew of the R/V Hakuho Maru for their tremendous assistance during the cruises. We are grateful to Drs. Koji Sugie and Jun Nishioka for the field sampling and nutrient analysis, respectively. This study was conducted within the framework of the JST-CREST program “Establishment of core technology for the preservation of marine diversity and ecosystems”.

Funding Information

The JST-CREST Program (JPMJCR11A5), JSPS Grant-in-Aid for Scientific Research on Innovative Areas (#24121004), Research Grant Council of Hong Kong (16128416 and 16101917), and the National Key Scientific Research Project (2015CB954003) sponsored by the Ministry of Science and Technology of the PRC partly funded this study. This work was also supported by CAS Pioneer Hundred Talents Program and the South China Sea Institute of Oceanography, CAS for the project “Different niches of Synechococcus ecotypes (50603-64)”.

Supplementary material

248_2018_1308_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1280 kb)
248_2018_1308_MOESM2_ESM.docx (44 kb)
ESM 2 (DOCX 44 kb)
248_2018_1308_MOESM3_ESM.fas (32 kb)
ESM 3 (FAS 32 kb)
248_2018_1308_MOESM4_ESM.fas (35 kb)
ESM 4 (FAS 35 kb)

References

  1. 1.
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WK, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine cyanobacteria. Prochlorococcus and Synechococcus. Proc Natl Acad Sci 110:9824–9829CrossRefGoogle Scholar
  2. 2.
    Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin-institut oceanographique monaco-numero special 457–476Google Scholar
  3. 3.
    Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259CrossRefGoogle Scholar
  4. 4.
    Mazard S, Ostrowski M, Partensky F, Scanlan DJ (2012) Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol 14:372–386CrossRefGoogle Scholar
  5. 5.
    Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191CrossRefGoogle Scholar
  6. 6.
    Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Yan Cheung S, Liu H (2017) Phylogeography and pigment type diversity of Synechococcus cyanobacteria in surface waters of the northwestern pacific ocean. Environ Microbiol 19:142–158CrossRefGoogle Scholar
  7. 7.
    Farrant GK, Dore H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, Pitt FD, Wincker P, Scanlan DJ, Iudicone D, Acinas SG, Garczarek L (2016) Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci 113:E3365–E3374CrossRefGoogle Scholar
  8. 8.
    Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J 6:285–297CrossRefGoogle Scholar
  9. 9.
    Toledo G, Palenik B (1997) Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63:4298–4303PubMedPubMedCentralGoogle Scholar
  10. 10.
    Xia X, Guo W, Tan S, Liu H (2017) Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front Microbiol 8:1254CrossRefGoogle Scholar
  11. 11.
    Cai H, Wang K, Huang S, Jiao N, Chen F (2010) Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl Environ Microbiol 76:2955–2960CrossRefGoogle Scholar
  12. 12.
    Haverkamp TH, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408CrossRefGoogle Scholar
  13. 13.
    Jing H, Liu H, Suzuki K (2009) Phylogenetic diversity of marine Synechococcus spp. in the Sea of Okhotsk. Aquat Microb Ecol 56:55–63CrossRefGoogle Scholar
  14. 14.
    Choi DH, Noh JH (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 69:439–448CrossRefGoogle Scholar
  15. 15.
    Ahlgren NA, Rocap G (2012) Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol 3:213CrossRefGoogle Scholar
  16. 16.
    Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, Webb EA, Rocap G (2016) Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J 10:333–345CrossRefGoogle Scholar
  17. 17.
    Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C (2014) Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J 8:1221–1236CrossRefGoogle Scholar
  18. 18.
    Paulsen ML, Doré H, Garczarek L, Seuthe L, Müller O, Sandaa R-A, Bratbak G, Larsen A (2016) Synechococcus in the Atlantic gateway to the Arctic Ocean. Front Mar Sci 3:191CrossRefGoogle Scholar
  19. 19.
    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161PubMedGoogle Scholar
  20. 20.
    Ahlgren NA, Noble A, Patton AP, Roache-Johnson K, Jackson L, Robinson D, McKay C, Moore LR, Saito MA, Rocap G (2014) The unique trace metal and mixed layer conditions of the Costa Rica upwelling dome support a distinct and dense community of Synechococcus. Limnol Oceanogr 59:2166–2184CrossRefGoogle Scholar
  21. 21.
    Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204CrossRefGoogle Scholar
  22. 22.
    Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996CrossRefGoogle Scholar
  23. 23.
    Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309CrossRefGoogle Scholar
  24. 24.
    Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'dwyer J, Koeppel AF, Green JL, Pollard KS (2013) Global marine bacterial diversity peaks at high latitudes in winter. ISME J 7:1669–1677CrossRefGoogle Scholar
  25. 25.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740CrossRefGoogle Scholar
  26. 26.
    Post AF, Penno S, Zandbank K, Paytan A, Huse SM, Welch DM (2011) Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front Microbiol 2:131.  https://doi.org/10.3389/fmicb.2011.00131 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xia X, Vidyarathna NK, Palenik B, Lee P, Liu H (2015) Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong. Appl Environ Microbiol 81:7644–7655.  https://doi.org/10.1128/AEM.01895-15 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tai V, Palenik B (2009) Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3:903–915.  https://doi.org/10.1038/ismej.2009.35 CrossRefPubMedGoogle Scholar
  29. 29.
    Lavin P, Gomez P, Gonzalez B, Ulloa O (2008) Diversity of the marine picocyanobacteria Prochlorococcus and Synechococcus assessed by terminal restriction fragment length polymorphisms of 16S-23S rRNA internal transcribed spacer sequences. Rev Chil Hist Nat 81Google Scholar
  30. 30.
    Zeidner G, Béjà O (2004) The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ Microbiol 6:528–534CrossRefGoogle Scholar
  31. 31.
    Mühling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ, Joint I, Mann NH (2006) High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquat Microb Ecol 45:263–275CrossRefGoogle Scholar
  32. 32.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868.  https://doi.org/10.1073/pnas.95.25.14863 CrossRefPubMedGoogle Scholar
  33. 33.
    Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047CrossRefGoogle Scholar
  35. 35.
    West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcuspopulations in a stratified water column in the eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454CrossRefGoogle Scholar
  37. 37.
    Longhurst AR (2007) Ecological geography of the sea. Elsevier, AmsterdamCrossRefGoogle Scholar
  38. 38.
    Endo H, Ogata H, Suzuki K (2018) Contrasting biogeography and diversity patterns between diatoms and haptophytes in the Central Pacific Ocean. Sci Rep 8:10916CrossRefGoogle Scholar
  39. 39.
    Endo H, Yoshimura T, Kataoka T, Suzuki K (2013) Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. J Exp Mar Biol Ecol 439:160–175CrossRefGoogle Scholar
  40. 40.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  41. 41.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. vol. 41. Information Retrieval Ltd., London, pp 95–98Google Scholar
  42. 42.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  43. 43.
    Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package ‘corrplot’. Statistician 56:316–324Google Scholar
  44. 44.
    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package 10:631–637Google Scholar
  45. 45.
    Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, Tanita I, Takeda S, Saito H, Hamasaki K (2018) Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cycles 32:1028–1044CrossRefGoogle Scholar
  46. 46.
    Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K-i, Ehama M, Hayashizaki K-i, Takahashi K, Hamasaki K, Furuya K (2016) Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J 10:2184–2197CrossRefGoogle Scholar
  47. 47.
    Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511CrossRefGoogle Scholar
  48. 48.
    Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20Google Scholar
  49. 49.
    Polovina JJ, Howell EA, Kobayashi DR, Seki MP (2017) The transition zone chlorophyll front updated: advances from a decade of research. Prog Oceanogr 150:79–85CrossRefGoogle Scholar
  50. 50.
    Stramma L, Peterson RG, Tomczak M (1995) The South Pacific current. J Phys Oceanogr 25:77–91CrossRefGoogle Scholar
  51. 51.
    Grébert T, Doré H, Partensky F, Farrant GK, Boss ES, Picheral M, Guidi L, Pesant S, Scanlan DJ, Wincker P (2018) Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci 201717069Google Scholar
  52. 52.
    Gutiérrez-Rodríguez A, Slack G, Daniels EF, Selph KE, Palenik B, Landry MR (2014) Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome. Limnol Oceanogr 59:705–723CrossRefGoogle Scholar
  53. 53.
    Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158.  https://doi.org/10.3389/fmicb.2011.00158 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci 109:18488–18492CrossRefGoogle Scholar
  55. 55.
    Choi DH, Selph KE, Noh JH (2015) Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. Algae 30:223–232CrossRefGoogle Scholar
  56. 56.
    Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 9:1278–1290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Faculty of Environmental Earth ScienceHokkaido University/JST-CRESTSapporoJapan
  4. 4.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityUjiJapan

Personalised recommendations