Advertisement

Microbial Diversity in an Arid, Naturally Saline Environment

  • Madlen Bachran
  • Sindy Kluge
  • Margarita Lopez-FernandezEmail author
  • Andrea CherkoukEmail author
Soil Microbiology
  • 119 Downloads

Abstract

The Arava Valley in is a rock desert within the Great African Rift valley. Soil from this area is covered with a salt crust. Here, we report microbial diversity from arid, naturally saline samples collected near Ein Yahav from the Arava Valley by culture-independent as well as culture-dependent analysis. High-throughput sequencing of the hypervariable region V4 of the 16S rRNA gene revealed that the microbial community consists of halophiles from the domain Bacteria as well as Archaea. Bacterial diversity was mainly represented by the genus Salinimicrobium of the order Flavobacteriales within the phylum Bacteroidetes, from the gammaproteobacterial orders Alteromonadales and Oceanospirillales as well as representatives from the order Bacillales of the phylum Firmicutes. Archaeal diversity was dominated by euryarchaeal Halobacteria from the orders Halobacteriales, Haloferacales, and Natrialbales. But more than 40% of the sequences affiliated with Archaea were assigned to unknown or unclassified archaea. Even if taxonomic resolution of the 16S rRNA gene V4 region for Archaea is limited, this study indicates the need of further and more detailed studies of Archaea. By using culture-dependent analysis, bacteria of the order Bacillales as well as archaea from all three halobacterial orders Halobacteriales, Haloferacales, and Natrialbales including potentially novel species from the genera Halorubrum and Haloparvum were isolated.

Keywords

Arid soil 16S rRNA gene Halophiles Bacteria Archaea 

Notes

Acknowledgements

We thank Osnat Gillor from the Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, Israel; Ines M Soares, a former colleague from the Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, Israel; and Sonja Selenska-Pobell, a former colleague of the Institute of Resource Ecology from the Helmholtz-Zentrum Dresden-Rossendorf for collecting and providing the samples. Additionally, we admire the support from the Analytics Group of the Institute of Resource Ecology from the Helmholtz-Zentrum Dresden-Rossendorf.

Supplementary material

248_2018_1301_MOESM1_ESM.docx (360 kb)
ESM 1 (DOCX 359 kb)

References

  1. 1.
    Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981CrossRefGoogle Scholar
  2. 2.
    Konings WN, Albers SV, Koning S, Driessen AJM (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Anton Leeuw 81:61–72CrossRefGoogle Scholar
  3. 3.
    Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315.  https://doi.org/10.3389/fmicb.2013.00315 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pandit AS, Joshi MN, Bhargava P, Shaikh I, Ayachit GN, Raj SR, Saxena AK, Bagatharia SB (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19:973–987CrossRefGoogle Scholar
  5. 5.
    Hollister EB, Engledow AS, Hammett AJM, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838CrossRefGoogle Scholar
  6. 6.
    Patel R, Mevada V, Prajapati D, Dudhagara P, Koringa P, Joshi CG (2015) Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India. Genomics Data 3:137–139CrossRefGoogle Scholar
  7. 7.
    Gupta RS, Naushad S, Fabros R, Adeolu M (2016) A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam. nov. Anton Leeuw 109:565–587CrossRefGoogle Scholar
  8. 8.
    Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069CrossRefGoogle Scholar
  9. 9.
    McDuff S, King GM, Neupane S, Myers MR (2016) Isolation and characterization of extremely halophilic CO-oxidizing Euryarchaeota from hypersaline cinders, sediments and soils and description of a novel CO oxidizer, Haloferax namakaokahaiae Mke2.3T, sp. nov. FEMS Microbiol Ecol 92:fiw028CrossRefGoogle Scholar
  10. 10.
    Chen YG, Cui XL, Zhang YQ, Li WJ, Wang YX, Kim CJ, Lim JM, Xu LH, Jiang CL (2008) Salinimicrobium terrae sp. nov., isolated from saline soil, and emended description of the genus Salinimicrobium. Int J Syst Evol Microbiol 58:2501–2504CrossRefGoogle Scholar
  11. 11.
    Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z, Fazeli SAS, Bolhuis H (2017) Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 7:11522CrossRefGoogle Scholar
  12. 12.
    Gibtan A, Park K, Woo M, Shin JK, Lee DW, Sohn JH, Song M, Roh SW, Lee SJ, Lee HS (2017) Diversity of extremely halophilic archaeal and bacterial communities from commercial salts. Front Microbiol 8:799CrossRefGoogle Scholar
  13. 13.
    Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G (2001) Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Anton Leeuw 79:149–161CrossRefGoogle Scholar
  14. 14.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522CrossRefGoogle Scholar
  15. 15.
    Data Analysis Methodology RTL Genomics. http://www.rtlgenomics.com/docs/Data_Analysis_Methodology.pdf
  16. 16.
    Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, Feazel LM, Park K, Pace NR, Frank DN (2013) Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29:3100–3101CrossRefGoogle Scholar
  17. 17.
    Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689CrossRefGoogle Scholar
  18. 18.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  19. 19.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  20. 20.
    Nedashkovskaya OI, Vancanneyt M, Kim SB, Han J, Zhukova NV, Shevchenko LS (2010) Salinimicrobium marinum sp. nov., a halophilic bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Salinimicrobium and Salinimicrobium catena. Int J Syst Evol Microbiol 60:2303–2306CrossRefGoogle Scholar
  21. 21.
    Yoon J-H, Kang S-J, Jung Y-T, Oh T-K (2007) Halobacillus campisalis sp. nov., containing mesodiaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus. Int J Syst Evol Microbiol 57:2021–2025CrossRefGoogle Scholar
  22. 22.
    Garcia MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov., sp nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795CrossRefGoogle Scholar
  23. 23.
    Sanchez-Porro C, Yilmaz P, de la Haba RR, Birbir M, Ventosa A (2011) Thalassobacillus pellis sp nov., a moderately halophilic, Gram-positive bacterium isolated from salted hides. Int J Syst Evol Microbiol 61:1206–1210CrossRefGoogle Scholar
  24. 24.
    Gao XH, Gao S, Zhou Y, Guan HL, Zhang YJ, Jia M, Huang HW, Yang DX, Li WJ, Tang SK (2013) Tenuibacillus halotolerans sp nov., a novel bacterium isolated from a soil sample from a salt lake in Xinjiang, China and emended description of the genus Tenuibacillus. Anton Leeuw 103:207–215CrossRefGoogle Scholar
  25. 25.
    Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P, Sproer C, Sanchez-Porro C, Ventosa A (2014) Aquibacillus halophilus gen. nov., sp nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 64:3616–3623CrossRefGoogle Scholar
  26. 26.
    Lim JM, Jeon CO, Park DJ, Kim HR, Yoon BJ, Kim CJ (2005) Pontibacillus marinus sp nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol 55:1027–1031CrossRefGoogle Scholar
  27. 27.
    Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE (2013) Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 8:e61692CrossRefGoogle Scholar
  28. 28.
    Wang ZJ, Liu QQ, Zhao LH, Du ZJ, Chen GJ (2015) Bradymonas sediminis gen. nov., sp nov., isolated from coastal sediment, and description of Bradymonadaceae fam. nov and Bradymonadales ord. nov. Int J Syst Evol Microbiol 65:1542–1549CrossRefGoogle Scholar
  29. 29.
    Gutierrez MC, Castillo AM, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Halopiger xanaduensis gen. nov., sp nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1402–1407CrossRefGoogle Scholar
  30. 30.
    Minegishi H, Shimogaki R, Enomoto S, Echigo A, Kondo Y, Nagaoka S, Shimane Y, Kamekura M, Itoh T, Ohkuma M, Nunoura T, Takai K, Usami R (2016) Halopiger thermotolerans sp nov., a thermo-tolerant haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 66:4975–4980CrossRefGoogle Scholar
  31. 31.
    Jaakkola ST, Pfeiffer F, Ravantti JJ, Guo QG, Liu Y, Chen XD, Ma HL, Yang CH, Oksanen HM, Bamford DH (2016) The complete genome of a viable archaeum isolated from 123-million-year-old rock salt. Environ Microbiol 18:565–579CrossRefGoogle Scholar
  32. 32.
    Jaakkola ST, Zerulla K, Guo QG, Liu Y, Ma HL, Yang CH, Bamford DH, Chen XD, Soppa J, Oksanen HM (2014) Halophilic archaea cultivated from surface sterilized Middle-Late Eocene rock salt are polyploid. PLoS One 9:e110533CrossRefGoogle Scholar
  33. 33.
    Kondo Y, Minegishi H, Echigo A, Shimane Y, Kamekura M, Itoh T, Ohkuma M, Takahashi-Ando N, Fukushima Y, Yoshida Y, Usami R (2015) Halorubrum gandharaense sp nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 65:2345–2350CrossRefGoogle Scholar
  34. 34.
    Cui HL, Li XY, Gao X, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093CrossRefGoogle Scholar
  35. 35.
    Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452CrossRefGoogle Scholar
  36. 36.
    Chen SX, Liu HC, Zhou J, Xiang H (2016) Haloparvum sedimenti gen. nov., sp nov., a member of the family Haloferacaceae. Int J Syst Evol Microbiol 66:2327–2334CrossRefGoogle Scholar
  37. 37.
    Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldan M, Gomez-Silva B, DiRuggiero J (2015) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ Microbiol 17:299–315CrossRefGoogle Scholar
  38. 38.
    Canfora L, Bacci G, Pinzari F, Lo Papa G, Dazzi C, Benedetti A (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9:e106662CrossRefGoogle Scholar
  39. 39.
    Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2CrossRefGoogle Scholar
  40. 40.
    Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495CrossRefGoogle Scholar
  41. 41.
    Lim JM, Jeon CO, Lee SS, Park DJ, Xu LH, Jiang CL, Kim CJ (2008) Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov and description of Salinimicrobium xinjiangense sp nov., a halophilic bacterium isolated from Xinjiang province in China. Int J Syst Evol Microbiol 58:438–442CrossRefGoogle Scholar
  42. 42.
    Sella S, Vandenberghe LPS, Soccol CR (2014) Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiol Res 169:931–939CrossRefGoogle Scholar
  43. 43.
    Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL (2007) Marinobacter gudaonensis sp nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57:250–254CrossRefGoogle Scholar
  44. 44.
    Jiang JQ, Pan YY, Hu SX, Zhang XX, Hu BZ, Huang HP, Hong S, Meng J, Li C, Wang KB (2014) Halomonas songnenensis sp nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 64:1662–1669CrossRefGoogle Scholar
  45. 45.
    Quillaguaman J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725CrossRefGoogle Scholar
  46. 46.
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048CrossRefGoogle Scholar
  47. 47.
    Yang Y, Cui HL, Zhou PJ, Liu SJ (2006) Halobacterium jilantaiense sp nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:2353–2355CrossRefGoogle Scholar
  48. 48.
    Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M (2013) Halolamina salifodinae sp nov and Halolamina sauna sp nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 63:4380–4385CrossRefGoogle Scholar
  49. 49.
    Corral P, de la Haba RR, Sanchez-Porro C, Amoozegar MA, Papke RT, Ventosa A (2015) Halorubrum persicum sp nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 65:1770–1778CrossRefGoogle Scholar
  50. 50.
    Rasooli M, Naghoni A, Amoozegar MA, Mirfeizi L, Nikou MM, Fazeli SAS, Minegishi H, Ventosa A (2017) Natrinema soli sp nov., a novel halophilic archaeon isolated from a hypersaline wetland. Int J Syst Evol Microbiol 67:2142–2147CrossRefGoogle Scholar
  51. 51.
    Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the Great Salt Plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58:519–528CrossRefGoogle Scholar
  52. 52.
    Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Resource EcologyHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations