Advertisement

The Oral Bacterium Fusobacterium nucleatum Binds Staphylococcus aureus and Alters Expression of the Staphylococcal Accessory Regulator sarA

  • Bruno P. Lima
  • Linda I. Hu
  • Gerrit W. Vreeman
  • Douglas B. Weibel
  • Renate LuxEmail author
Environmental Microbiology

Abstract

Staphylococcus aureus, an opportunistic pathogen member of the nasal and skin microbiota, can also be found in human oral samples and has been linked to infectious diseases of the oral cavity. As the nasal and oral cavities are anatomically connected, it is currently unclear whether S. aureus can colonize the oral cavity and become part of the oral microbiota, or if its presence in the oral cavity is simply transient. To start addressing this question, we assessed S. aureus ability to directly bind selected members of the oral microbiota as well as its ability to integrate into a human-derived complex oral microbial community in vitro. Our data show that S. aureus forms aggregates with Fusobacterium nucleatum and Porphyromonas gingivalis and that it can incorporate into the human-derived in vitro oral community. Further analysis of the F. nucleatum-S. aureus interaction revealed that the outer-membrane adhesin RadD is partially involved in aggregate formation and that the RadD-mediated interaction leads to an increase in expression of the staphylococcal global regulator gene sarA. Our findings lend support to the notion that S. aureus can become part of the complex microbiota of the human mouth, which could serve as a reservoir for S. aureus. Furthermore, direct interaction with key members of the oral microbiota could affect S. aureus pathogenicity contributing to the development of several S. aureus associated oral infections.

Keywords

Oral ecology Staphylococcus Fusobacterium Coaggregation SarA 

Notes

Acknowledgements

We thank members of the Lux, Weibel, and Herzberg laboratories for discussion and/or critical reading of the manuscript. We thank Dr. Blaise Boles for giving us S. aureus strains SH1000 and USA300. We also thank Dr. Kelly Schwartz for helping us optimize the growth conditions for S. aureus biofilm.

Funding Information

The study was supported by a grant from the National Institutes of Health: NIDCR R01 DE021108 (R. L.) with a research supplement (B. L.) and by a grant from the National Science Foundation DMR-1121288 (D. W.). The funding agency had no role in study design, data collection, and interpretation or the decision to submit the work for publication.

Supplementary material

248_2018_1291_MOESM1_ESM.jpg (12 kb)
Supplemental Fig. 1) Biofilm formation of S. aureus SH1000 (Sa) cells, TBS66 media, compared to media alone or empty well. The plate was incubated anaerobically at 37 °C for 16 h. Crystal violet retention was used as an indicator of biomass. Data represent means and standard deviation of three independent replicates. (JPG 11 kb)
248_2018_1291_MOESM2_ESM.jpg (42 kb)
Supplemental Fig. 2) a S. aureus SH1000 was grown shaking with aeration in TSB66 containing 0–0.3% maltose w/v in a 96 well plate for 24 h. Biofilm was quantified by crystal violet staining of attached cells (left Y-axis). Growth of the planktonic cells was quantified by transferring the cultures into a clean 96 well plate and measuring the absorbance (right Y-axis). The values are averages of four wells and standard deviations. b S. aureus SH1000 was grown at 37 °C, shaking with aeration in TSB66 containing 0–0.3% maltose w/v for 10 h. OD600 was measured every 50 min. Data represent means and standard deviation of 3 biological replicates. (JPG 42 kb)

References

  1. 1.
    Lowy FD (1998) Staphylococcus aureus infections. N. Engl. J. Med. 339(8):520–532.  https://doi.org/10.1056/NEJM199808203390806 CrossRefPubMedGoogle Scholar
  2. 2.
    McCormack MG, Smith AJ, Akram AN, Jackson M, Robertson D, Edwards G (2015) Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection? Am. J. Infect. Control 43(1):35–37.  https://doi.org/10.1016/j.ajic.2014.09.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Ohara-Nemoto Y, Haraga H, Kimura S, Nemoto TK (2008) Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J. Med. Microbiol. 57(Pt 1):95–99.  https://doi.org/10.1099/jmm.0.47561-0 CrossRefPubMedGoogle Scholar
  4. 4.
    MacFarlane TW, Helnarska SJ (1976) The microbiology of angular cheilitis. Br. Dent. J. 140(12):403–406CrossRefGoogle Scholar
  5. 5.
    Koorbusch GF, Fotos P, Goll KT (1992) Retrospective assessment of osteomyelitis. Etiology, demographics, risk factors, and management in 35 cases. Oral Surg Oral Med Oral Pathol 74(2):149–154CrossRefGoogle Scholar
  6. 6.
    Lamey PJ, Boyle MA, MacFarlane TW, Samaranayake LP (1987) Acute suppurative parotitis in outpatients: microbiologic and posttreatment sialographic findings. Oral Surg Oral Med Oral Pathol 63(1):37–41CrossRefGoogle Scholar
  7. 7.
    Fritschi BZ, Albert-Kiszely A, Persson GR (2008) Staphylococcus aureus and other bacteria in untreated periodontitis. J. Dent. Res. 87(6):589–593.  https://doi.org/10.1177/154405910808700605 CrossRefPubMedGoogle Scholar
  8. 8.
    Persson GR, Renvert S (2014) Cluster of bacteria associated with peri-implantitis. Clin. Implant. Dent. Relat. Res. 16(6):783–793.  https://doi.org/10.1111/cid.12052 CrossRefPubMedGoogle Scholar
  9. 9.
    Kaufman AY, Henig EF (1976) The microbiologic approach in endodontics. Oral Surg Oral Med Oral Pathol 42(6):810–816CrossRefGoogle Scholar
  10. 10.
    Tronstad L, Barnett F, Riso K, Slots J (1987) Extraradicular endodontic infections. Oral Surg Oral Med Oral Pathol 3(2):86–90Google Scholar
  11. 11.
    Wyman TP, Dowden WE, Langeland K (1978) Staphylococcus aureus isolation from a clinically nonexposed root canal. J. Endod. 4(4):122–128.  https://doi.org/10.1016/S0099-2399(78)80202-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Brook I (1999) Bacterial interference. Crit. Rev. Microbiol. 25(3):155–172.  https://doi.org/10.1080/10408419991299211 CrossRefPubMedGoogle Scholar
  13. 13.
    Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286(5444):1577–1579CrossRefGoogle Scholar
  14. 14.
    He X, Tian Y, Guo L, Lux R, Zusman DR, Shi W (2010) Oral-derived bacterial flora defends its domain by recognizing and killing intruders—a molecular analysis using Escherichia coli as a model intestinal bacterium. Microb. Ecol. 60(3):655–664.  https://doi.org/10.1007/s00248-010-9708-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    He X, McLean JS, Guo L, Lux R, Shi W (2014) The social structure of microbial community involved in colonization resistance. ISME J 8(3):564–574.  https://doi.org/10.1038/ismej.2013.172 CrossRefPubMedGoogle Scholar
  16. 16.
    Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J. Bacteriol. 184(19):5457–5467CrossRefGoogle Scholar
  17. 17.
    Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175(6):3907–3919CrossRefGoogle Scholar
  18. 18.
    Kaplan CW, Lux R, Haake SK, Shi W (2009) The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71(1):35–47.  https://doi.org/10.1111/j.1365-2958.2008.06503.x CrossRefPubMedGoogle Scholar
  19. 19.
    Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 63(10):3878–3885PubMedPubMedCentralGoogle Scholar
  20. 20.
    Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS (2013) An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome 1(1):25.  https://doi.org/10.1186/2049-2618-1-25 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tian Y, He X, Torralba M, Yooseph S, Nelson KE, Lux R, McLean JS, Yu G, Shi W (2010) Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol Oral Microbiol 25(5):357–367.  https://doi.org/10.1111/j.2041-1014.2010.00585.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kolenbrander PE, Andersen RN, Moore LV (1990) Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 56(12):3890–3894PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lima BP, Shi W, Lux R (2017) Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiology 6:e00444.  https://doi.org/10.1002/mbo3.444 CrossRefGoogle Scholar
  24. 24.
    Rupf S, Merte K, Eschrich K (1999) Quantification of bacteria in oral samples by competitive polymerase chain reaction. J. Dent. Res. 78(4):850–856.  https://doi.org/10.1177/00220345990780040501 CrossRefPubMedGoogle Scholar
  25. 25.
    Renner LD, Zan J, Hu LI, Martinez M, Resto PJ, Siegel AC, Torres C, Hall SB, Slezak TR, Nguyen TH, Weibel DB (2017) Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform. Appl. Environ. Microbiol. 83(4):e02449-16. doi: https://doi.org/10.1128/AEM.02449-16
  26. 26.
    Sambanthamoorthy K, Smeltzer MS, Elasri MO (2006) Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus. Microbiology 152(Pt 9):2559–2572.  https://doi.org/10.1099/mic.0.29071-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010:baq013.  https://doi.org/10.1093/database/baq013 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Duran-Pinedo AE, Frias-Lopez J (2015) Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 17(7):505–516.  https://doi.org/10.1016/j.micinf.2015.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shanks RM, Donegan NP, Graber ML, Buckingham SE, Zegans ME, Cheung AL, O'Toole GA (2005) Heparin stimulates Staphylococcus aureus biofilm formation. Infect. Immun. 73(8):4596–4606.  https://doi.org/10.1128/IAI.73.8.4596-4606.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Peyrot d, Gachons C, Breslin PA (2016) Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep 16(10):102.  https://doi.org/10.1007/s11892-016-0794-7 CrossRefGoogle Scholar
  31. 31.
    Kolenbrander PE, Andersen RN (1990) Characterization of Streptococcus gordonii (S. sanguis) PK488 adhesin-mediated coaggregation with Actinomyces naeslundii PK606. Infect. Immun. 58(9):3064–3072PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kolenbrander PE, Palmer Jr RJ, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8(7):471–480.  https://doi.org/10.1038/nrmicro2381 CrossRefPubMedGoogle Scholar
  33. 33.
    Huang X, Zhang K, Deng M, Exterkate RAM, Liu C, Zhou X, Cheng L, Ten Cate JM (2017) Effect of arginine on the growth and biofilm formation of oral bacteria. Arch. Oral Biol. 82:256–262.  https://doi.org/10.1016/j.archoralbio.2017.06.026 CrossRefPubMedGoogle Scholar
  34. 34.
    Takemoto T, Ozaki M, Shirakawa M, Hino T, Okamoto H (1993) Purification of arginine-sensitive hemagglutinin from Fusobacterium nucleatum and its role in coaggregation. J. Periodontal Res. 28(1):21–26CrossRefGoogle Scholar
  35. 35.
    Edwards AM, Grossman TJ, Rudney JD (2007) Association of a high-molecular weight arginine-binding protein of Fusobacterium nucleatum ATCC 10953 with adhesion to secretory immunoglobulin A and coaggregation with Streptococcus cristatus. Oral Microbiol. Immunol. 22(4):217–224.  https://doi.org/10.1111/j.1399-302X.2006.00343.x CrossRefPubMedGoogle Scholar
  36. 36.
    Park J, Shokeen B, Haake SK, Lux R (2016) Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis. Int J Oral Sci 8(3):138–144.  https://doi.org/10.1038/ijos.2016.27 CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X, Han YW, Bachrach G (2015) Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 83(3):1104–1113.  https://doi.org/10.1128/IAI.02838-14 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 73(3):407–450, Table of Contents.  https://doi.org/10.1128/MMBR.00014-09 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    de Avila ED, de Molon RS, Lima BP, Lux R, Shi W, Junior MJ, Spolidorio DM, Vergani CE, de Assis Mollo Junior F (2016) Impact of physical chemical characteristics of abutment implant surfaces on Bacteria adhesion. J Oral Implantol 42(2):153–158.  https://doi.org/10.1563/aaid-joi-D-14-00318 CrossRefPubMedGoogle Scholar
  40. 40.
    Hajishengallis G, Lamont RJ (2016) Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 24(6):477–489.  https://doi.org/10.1016/j.tim.2016.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hendrickson EL, Beck DA, Miller DP, Wang Q, Whiteley M, Lamont RJ, Hackett M (2017) Insights into dynamic polymicrobial synergy revealed by time-coursed RNA-Seq. Front. Microbiol. 8:261.  https://doi.org/10.3389/fmicb.2017.00261 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Leonhardt A, Dahlen G, Renvert S (2003) Five-year clinical, microbiological, and radiological outcome following treatment of peri-implantitis in man. J. Periodontol. 74(10):1415–1422.  https://doi.org/10.1902/jop.2003.74.10.1415 CrossRefPubMedGoogle Scholar
  43. 43.
    Weiss EC, Zielinska A, Beenken KE, Spencer HJ, Daily SJ, Smeltzer MS (2009) Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob. Agents Chemother. 53(10):4096–4102.  https://doi.org/10.1128/AAC.00484-09 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tsang LH, Cassat JE, Shaw LN, Beenken KE, Smeltzer MS (2008) Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS One 3(10):e3361.  https://doi.org/10.1371/journal.pone.0003361 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186(14):4665–4684.  https://doi.org/10.1128/JB.186.14.4665-4684.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guo L, He X, Shi W (2014) Intercellular communications in multispecies oral microbial communities. Front. Microbiol. 5:328.  https://doi.org/10.3389/fmicb.2014.00328 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kolenbrander PE, Andersen RN, Moore LV (1989) Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun. 57(10):3194–3203PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kolenbrander PE, Parrish KD, Andersen RN, Greenberg EP (1995) Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect. Immun. 63(12):4584–4588PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bor B, Cen L, Agnello M, Shi W, He X (2016) Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep. 6:27956.  https://doi.org/10.1038/srep27956 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maukonen J, Matto J, Suihko ML, Saarela M (2008) Intra-individual diversity and similarity of salivary and faecal microbiota. J. Med. Microbiol. 57(Pt 12):1560–1568.  https://doi.org/10.1099/jmm.0.47352-0 CrossRefPubMedGoogle Scholar
  51. 51.
    Onderdonk AB, Bartlett JG, Louie T, Sullivan-Seigler N, Gorbach SL (1976) Microbial synergy in experimental intra-abdominal abscess. Infect. Immun. 13(1):22–26PubMedPubMedCentralGoogle Scholar
  52. 52.
    Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M (2016) A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. 7(3):e00782-16. doi: https://doi.org/10.1128/mBio.00782-16
  53. 53.
    Ponnusamy D, Kozlova EV, Sha J, Erova TE, Azar SR, Fitts EC, Kirtley ML, Tiner BL, Andersson JA, Grim CJ, Isom RP, Hasan NA, Colwell RR, Chopra AK (2016) Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. U. S. A. 113(3):722–727.  https://doi.org/10.1073/pnas.1523817113 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shweta PSK (2013) Dental abscess: a microbiological review. Dent Res J (Isfahan) 10(5):585–591Google Scholar
  55. 55.
    Robertson D, Smith AJ (2009) The microbiology of the acute dental abscess. J. Med. Microbiol. 58(Pt 2):155–162.  https://doi.org/10.1099/jmm.0.003517-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40(1):1–9CrossRefGoogle Scholar
  57. 57.
    Balamurugan P, Praveen Krishna V, Bharath D, Lavanya R, Vairaprakash P, Adline Princy S (2017) Staphylococcus aureus quorum regulator SarA targeted compound, 2-[(methylamino)methyl]phenol inhibits biofilm and down-regulates virulence genes. Front. Microbiol. 8:1290.  https://doi.org/10.3389/fmicb.2017.01290 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect. Immun. 71(7):4206–4211CrossRefGoogle Scholar
  59. 59.
    Trotonda MP, Manna AC, Cheung AL, Lasa I, Penades JR (2005) SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J. Bacteriol. 187(16):5790–5798.  https://doi.org/10.1128/JB.187.16.5790-5798.2005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Constitutive and Regenerative Sciences, School of DentistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Diagnostic and Biological Sciences, School of DentistryUniversit of MinnesotaMinneapolisUSA
  3. 3.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Microbiology-Immunology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  5. 5.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  6. 6.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations