Advertisement

Experimental Testing of Dispersal Limitation in Soil Bacterial Communities with a Propagule Addition Approach

  • Fen-Guo Zhang
  • Thomas Bell
  • Quan-Guo ZhangEmail author
Environmental Microbiology

Abstract

The role of dispersal in the assembly of microbial communities remains contentious. This study tested the importance of dispersal limitation for the structuring of local soil bacterial communities using an experimental approach of propagule addition. Microbes extracted from soil pooled from samples collected at 20 localities across ~ 400 km in a temperate steppe were added to microcosms of local soils at three sites; the microcosms were then incubated in situ for 3 months. We then assessed the composition and diversity of bacterial taxa in the soils using 16S rRNA gene amplicon sequencing. The addition of the regional microbial pool did not cause significant changes in the overall composition or diversity of the total bacterial community, although a very small number of individual taxa may have been affected by the addition treatment. Our results suggest a negligible role of dispersal limitation in structuring soil bacterial communities in our study area.

Keywords

Soil bacteria Community assembly Microcosm Regional processes Seed addition 

Notes

Funding information

This study was funded by the National Natural Science Foundation of China (31700434, 31725006, and 31670376) and the 111 project (B13008). The 16S rRNA gene sequence data were deposited in the NCBI Sequence Read Archive under accession number SRP057046.

Compliance with Ethical Standards

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

248_2018_1284_MOESM1_ESM.pdf (457 kb)
ESM 1 (PDF 457 kb)
248_2018_1284_MOESM2_ESM.xlsx (3.1 mb)
ESM 2 (XLSX 3208 kb)

References

  1. 1.
    Ricklefs RE, Schluter D (1993) Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 350–363Google Scholar
  2. 2.
    Vellend M (2010) Conceptual synthesis in community ecology. Q. Rev. Biol. 85:183–206.  https://doi.org/10.1086/652373 CrossRefPubMedGoogle Scholar
  3. 3.
    Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171.  https://doi.org/10.1126/science.235.4785.167 CrossRefPubMedGoogle Scholar
  4. 4.
    Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063.  https://doi.org/10.1126/science.1070710 CrossRefPubMedGoogle Scholar
  5. 5.
    Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. BioScience 54:777–784. https://doi.org/10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2CrossRefGoogle Scholar
  6. 6.
    de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did baas Becking and Beijerinck really say? Environ. Microbiol. 8:755–758.  https://doi.org/10.1111/j.1462-2920.2006.01017.x CrossRefPubMedGoogle Scholar
  7. 7.
    O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Phil Biol Biomed Sci 39:314–325.  https://doi.org/10.1016/j.shpsc.2008.06.005 CrossRefGoogle Scholar
  8. 8.
    Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77:342–356.  https://doi.org/10.1128/mmbr.00051-12 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506.  https://doi.org/10.1038/nrmicro2795 CrossRefPubMedGoogle Scholar
  10. 10.
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112.  https://doi.org/10.1038/nrmicro1341 CrossRefPubMedGoogle Scholar
  11. 11.
    Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5:650–659.  https://doi.org/10.1046/j.1462-2920.2003.00460.x CrossRefPubMedGoogle Scholar
  12. 12.
    Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978.  https://doi.org/10.1126/science.1086909 CrossRefPubMedGoogle Scholar
  13. 13.
    Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227–239.  https://doi.org/10.1128/aem.71.1.227-239.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750.  https://doi.org/10.1038/nature03034 CrossRefPubMedGoogle Scholar
  15. 15.
    Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722.  https://doi.org/10.1890/04-1587 CrossRefGoogle Scholar
  16. 16.
    Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413.  https://doi.org/10.1038/ismej.2011.21 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ge Y, He J-z, Zhu Y-G, Zhang J-B, Xu Z, Zhang L-M, Zheng Y-M (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264.  https://doi.org/10.1038/ismej.2008.2 CrossRefPubMedGoogle Scholar
  18. 18.
    Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753.  https://doi.org/10.1038/nature03073 CrossRefPubMedGoogle Scholar
  19. 19.
    Vos M, Velicer GJ (2008) Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Curr. Biol. 18:386–391.  https://doi.org/10.1016/j.cub.2008.02.050 CrossRefPubMedGoogle Scholar
  20. 20.
    Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015.  https://doi.org/10.1126/science.1125669 CrossRefPubMedGoogle Scholar
  21. 21.
    van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna J-M, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. U. S. A. 104:20404–20409.  https://doi.org/10.1073/pnas.0707200104 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E (2010) Regional species pools control community saturation in lake phytoplankton. Proc. R. Soc. B 277:3755–3764.  https://doi.org/10.1098/rspb.2010.1158 CrossRefPubMedGoogle Scholar
  23. 23.
    Ryšánek D, Hrčková K, Škaloud P (2015) Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ. Microbiol. 17:689–698.  https://doi.org/10.1111/1462-2920.12501 CrossRefPubMedGoogle Scholar
  24. 24.
    Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366:2351–2363.  https://doi.org/10.1098/rstb.2011.0063 CrossRefGoogle Scholar
  25. 25.
    Hao Y-Q, Zhao X-F, Zhang D-Y (2016) Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities. Environ. Microbiol. 18:1730–1739.  https://doi.org/10.1111/1462-2920.12858 CrossRefPubMedGoogle Scholar
  26. 26.
    Comte J, Lindström ES, Eiler A, Langenheder S (2014) Can marine bacteria be recruited from freshwater sources and the air? ISME J 8:2423–2430.  https://doi.org/10.1038/ismej.2014.89 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094.  https://doi.org/10.1038/ismej.2010.207 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bell T (2010) Experimental tests of the bacterial distance–decay relationship. ISME J 4:1357–1365.  https://doi.org/10.1038/ismej.2010.77 CrossRefPubMedGoogle Scholar
  29. 29.
    Myers JA, Harms KE (2009) Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol. Lett. 12:1250–1260.  https://doi.org/10.1111/j.1461-0248.2009.01373.x CrossRefPubMedGoogle Scholar
  30. 30.
    Spalding VM (1909) Distribution and movement of desert plants. Carnegie Institute of Washington, Washington, DCGoogle Scholar
  31. 31.
    Cornell HV, Harrison SP (2014) What are species pools and when are they important? Annu. Rev. Ecol. Evol. Syst. 45:45–67.  https://doi.org/10.1146/annurev-ecolsys-120213-091759 CrossRefGoogle Scholar
  32. 32.
    Foster BL, Tilman D (2003) Seed limitation and the regulation of community structure in oak savanna grassland. J. Ecol. 91:999–1007.  https://doi.org/10.1046/j.1365-2745.2003.00830.x CrossRefGoogle Scholar
  33. 33.
    Germain RM, Strauss SY, Gilbert B (2017) Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. Proc. Natl. Acad. Sci. U. S. A. 114:4447–4452.  https://doi.org/10.1073/pnas.1615338114 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  37. 37.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang F-G, Zhang Q-G (2015) Patterns in species persistence and biomass production in soil microcosms recovering from a disturbance reject a neutral hypothesis for bacterial community assembly. PLoS One 10:e0126962.  https://doi.org/10.1371/journal.pone.0126962 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8:2162–2169.  https://doi.org/10.1111/j.1462-2920.2006.01098.x CrossRefPubMedGoogle Scholar
  40. 40.
    van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. U. S. A. 109:1159–1164.  https://doi.org/10.1073/pnas.1109326109 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Peter H, Beier S, Bertilsson S, Lindström ES, Langenheder S, Tranvik LJ (2011) Function-specific response to depletion of microbial diversity. ISME J 5:351–361.  https://doi.org/10.1038/ismej.2010.119 CrossRefPubMedGoogle Scholar
  42. 42.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17–8Google Scholar
  43. 43.
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. 44.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325–349.  https://doi.org/10.2307/1942268 CrossRefGoogle Scholar
  45. 45.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46.  https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x CrossRefGoogle Scholar
  46. 46.
    Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20:459–477.  https://doi.org/10.1128/cmr.00039-06 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Perfumo A, Marchant R (2010) Global transport of thermophilic bacteria in atmospheric dust. Environ. Microbiol. Rep. 2:333–339.  https://doi.org/10.1111/j.1758-2229.2010.00143.x CrossRefPubMedGoogle Scholar
  48. 48.
    Bowers RM, Sullivan AP, Costello EK, Collett JL, Knight R, Fierer N (2011) Sources of bacteria in outdoor air across cities in the midwestern United States. Appl. Environ. Microbiol. 77:6350–6356.  https://doi.org/10.1128/aem.05498-11 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Peter H, Hörtnagl P, Reche I, Sommaruga R (2014) Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ. Microbiol. Rep. 6:618–624.  https://doi.org/10.1111/1758-2229.12175 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang H, Zhu SD, John R, Li RH, Liu H, Ye Q (2017) Habitat filtering and exclusion of weak competitors jointly explain fern species assemblage along a light and water gradient. Sci. Rep. 7:298.  https://doi.org/10.1038/s41598-017-00429-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. 87:111–127.  https://doi.org/10.1111/j.1469-185X.2011.00187.x CrossRefPubMedGoogle Scholar
  52. 52.
    Chen IC, Hsieh C-h, Kondoh M, Lin H-J, Miki T, Nakamura M, Ohgushi T, Urabe J, Yoshida T (2017) Filling the gaps in ecological studies of socioecological systems. Ecol. Res. 32:873–885.  https://doi.org/10.1007/s11284-017-1521-9 CrossRefGoogle Scholar
  53. 53.
    Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23.  https://doi.org/10.1146/annurev-ecolsys-110411-160340 CrossRefGoogle Scholar
  54. 54.
    Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66:5448–5456.  https://doi.org/10.1128/aem.66.12.5448-5456.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen H-B, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8:14349.  https://doi.org/10.1038/ncomms14349 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Calderón K, Spor A, Breuil M-C, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:272–283.  https://doi.org/10.1038/ismej.2016.86 CrossRefPubMedGoogle Scholar
  57. 57.
    Vannette RL, Fukami T, Wootton T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17:115–124.  https://doi.org/10.1111/ele.12204 CrossRefPubMedGoogle Scholar
  58. 58.
    Hesse E, O'Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A, Klironomos J (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21:117–127.  https://doi.org/10.1111/ele.12878 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life SciencesShanxi Normal UniversityLinfenChina
  2. 2.Department of Life SciencesImperial College LondonAscotUK
  3. 3.State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations