Advertisement

Microbial Ecology

, Volume 77, Issue 3, pp 782–793 | Cite as

Captivity-Induced Changes in the Skin Microbial Communities of Hellbenders (Cryptobranchus alleganiensis)

  • Obed Hernández-GómezEmail author
  • Jeffrey T. Briggler
  • Rod N. Williams
Host Microbe Interactions

Abstract

Variation in environmental conditions can result in disparate associations between hosts and microbial symbionts. As such, it is imperative to evaluate how environmental variables (e.g., habitat quality) can influence host-associated microbiome composition. Within wildlife conservation programs, captive conditions can negatively influence the establishment and maintenance of “wild-type” microbiotas within a host. Alternative microbial communities can result in the proliferation of disease among captive stock or upon reintroduction. Hellbenders (Cryptobranchus alleganiensis) are a threatened salamander for which extensive captive management is currently employed. Using metabarcoding, we characterized the skin microbiota of wild and captive hellbenders from two subspecies in the state of Missouri, the eastern (C. a. alleganiensis) and the Ozark hellbender (C. a. bishopi). Both subspecies in our study included wild adults and captive juveniles that were collected from the wild as eggs. Our objectives were to investigate differences in the skin microbial communities’ richness/diversity, composition, and functional profiles of microbes between wild and captive individuals. Captive eastern hellbenders possessed richer communities than wild cohorts, whereas the opposite pattern was observed within the Ozark subspecies. We found significant microbial community structure between wild and captive populations of both subspecies. Microbiota structure translated into differences in the predicted metagenome of wild and captive individuals as well. As such, we can expect captive hellbenders to experience alternative microbial structure and function upon reintroduction into the wild. Our study provides a baseline for the effect of captivity on the skin microbial communities of hellbenders, and highlights the need to incorporate microbiota management in current captive-rearing programs.

Keywords

Ozark hellbender Eastern hellbender 16S rRNA Amphibian conservation Amphibian skin microbiota Metabarcoding 

Notes

Acknowledgments

We thank the members of the Williams lab for assistance in revising this document. Special thanks especially to Erin Kenison for detailed comments and suggestions. Thanks to Phillip San Miguel and Viktoria Krasnyanskaya from the Purdue Genomics Core for assistance in sequencing library preparation. We also thank the Missouri Department of Conservation and the St. Louis Zoo Ron Goellner Center for Hellbender Conservation for providing access to sampling and for their interest in this project.

Funding

Funding for this study was provided by Purdue University.

Compliance with Ethical Standards

We handled hellbenders following an approved protocol by the Purdue University Animal Care and Use Committee (PACUC protocol no. 14060011094).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

248_2018_1258_MOESM1_ESM.pdf (127 kb)
ESM 1 (PDF 127 kb)

References

  1. 1.
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262.  https://doi.org/10.1126/science.1224203 CrossRefGoogle Scholar
  2. 2.
    Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170.  https://doi.org/10.1146/annurev-genom-090711-163814 CrossRefGoogle Scholar
  3. 3.
    Kaplan JL, Shi HN, Walker WA (2011) The role of microbes in developmental immunologic programming. Pediatr Res 69:465–472.  https://doi.org/10.1203/PDR.0b013e318217638a CrossRefGoogle Scholar
  4. 4.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810.  https://doi.org/10.1038/nature06244 CrossRefGoogle Scholar
  5. 5.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227.  https://doi.org/10.1038/nature11053 CrossRefGoogle Scholar
  6. 6.
    Huttenhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214.  https://doi.org/10.1038/nature11234 CrossRefGoogle Scholar
  7. 7.
    Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Hanson JD, Siles L, Ordonez-Garza N, San Francisco M, Baker RJ (2012) Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21:2617–2627.  https://doi.org/10.1111/j.1365-294X.2012.05568.x CrossRefGoogle Scholar
  8. 8.
    McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596CrossRefGoogle Scholar
  9. 9.
    Hernández-Gómez O, Hoverman JT, Williams RN (2017) Cutaneous microbial community variation across populations of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.01379
  10. 10.
    Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290.  https://doi.org/10.1038/nrmicro2540 CrossRefGoogle Scholar
  11. 11.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974.  https://doi.org/10.1126/science.1198719 CrossRefGoogle Scholar
  12. 12.
    Krynak KL, Burke DJ, Benard MF (2016) Landscape and water characteristics correlate with immune defense traits across Blanchard’s cricket frog (Acris blanchardi) populations. Biol Conserv 193:153–167.  https://doi.org/10.1016/j.biocon.2015.11.019 CrossRefGoogle Scholar
  13. 13.
    Vences M, Dohrmann AB, Kuenzel S, Granzow S, Baines JF, Tebbe CC (2015) Composition and variation of the skin microbiota in sympatric species of European newts (Salamandridae). Amphibia-Reptilia 36:5–12.  https://doi.org/10.1163/15685381-00002970 CrossRefGoogle Scholar
  14. 14.
    Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). Plos One 9. doi: https://doi.org/10.1371/journal.pone.0085563
  15. 15.
    Wienemann T, Schmitt-Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, Berthold P (2011) The bacterial microbiota in the ceca of capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst Appl Microbiol 34:542–551.  https://doi.org/10.1016/j.syapm.2011.06.003 CrossRefGoogle Scholar
  16. 16.
    Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840.  https://doi.org/10.1038/ismej.2013.200 CrossRefGoogle Scholar
  17. 17.
    Redford KH, Segre JA, Salafsky N, del Rio CM, McAloose D (2012) Conservation and the microbiome. Conserv Biol 26:195–197CrossRefGoogle Scholar
  18. 18.
    Woodhams DC, Vredenburg VT, Simon MA, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398.  https://doi.org/10.1016/j.biocon.2007.05.004 CrossRefGoogle Scholar
  19. 19.
    Zippel K, Johnson K, Gagliardo R, Gibson R, McFadden M, Browne R, Martinez C, Townsend E (2011) The amphibian ark: a global community for ex situ conservation of amphibians. Herpetol Conserv Biol 6:340–352Google Scholar
  20. 20.
    Sabino-Pinto J, Bletz MC, Islam MM, Shimizu N, Bhuju S, Geffers R, Jarek M, Kurabayashi A, Vences M (2016) Composition of the cutaneous bacterial community in Japanese amphibians: effects of captivity, host species, and body region. Microb Ecol 72:460–469.  https://doi.org/10.1007/s00248-016-0797-6 CrossRefGoogle Scholar
  21. 21.
    Becker MH, Richards-Zawacki CL, Gratwicke B, Belden LK (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki). Biol Conserv 176:199–206.  https://doi.org/10.1016/j.biocon.2014.05.029 CrossRefGoogle Scholar
  22. 22.
    Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ (2016) Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc Biol Sci 283:20161553.  https://doi.org/10.1098/rspb.2016.1553 CrossRefGoogle Scholar
  23. 23.
    Nickerson MA, Mays CE (1973) The hellbenders: North American ‘giant salamanders’. Milwaukee public museum, MilwaukeeGoogle Scholar
  24. 24.
    Wheeler BA, Prosen E, Mathis A, Wilkinson RF (2003) Population declines of a long-lived salamander: a 20+−year study of hellbenders, Cryptobranchus alleganiensis. Biol Conserv 109:151–156CrossRefGoogle Scholar
  25. 25.
    Federal Register (2011) Endangered and threatened wildlife and plants; endangered status for the Ozark hellbender salamander. Fed Commun Comm 76:61956–61978Google Scholar
  26. 26.
    Ettling JA, Wanner MD, Schuette CD, Armstrong SL, Pedigo AS, Briggler JT (2013) Captive reproduction and husbandry of adult Ozark hellbenders, Cryptobranchus alleganiensis bishopi. Herpetoculture 44:605–610Google Scholar
  27. 27.
    Briggler JT, Crabill T, Irwin KJ, Davidson C, Civiello JA, Wanner MD, Shuette CD, Armstrong SL, Grant V, Davidson T, Ettling JA (2012) Propagation, augmentation, and reintroduction plan for the Ozark hellbender (Cryptobranchus alleganiensis bishopi). Ozark Hellbender Propagation Committee, Jefferson City, MOGoogle Scholar
  28. 28.
    Briggler JT, Crabill TL, Irwin KJ, Davidson C, Utrup J, Salveter A (2010) Hellbender conservation strategy: an action plan for the recovery of the Ozark and eastern hellbender in the Ozark highlands of Missouri and Arkansas. Jefferson City, MOGoogle Scholar
  29. 29.
    Ettling JA, Wanner MD, Pedigo AS, Kenkel JL, Noble KR, Briggler JT (2017) Augmentation programme for the endangered Ozark hellbender (Cryptobranchus alleganiensis bishopi) in Missouri. Int Zoo Yearb 51:79–86.  https://doi.org/10.1111/izy.12162 CrossRefGoogle Scholar
  30. 30.
    Kraus BT, McCallen EB, Williams RN (2017) Evaluating the survival of translocated adult and captive-reared, juvenile eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Herpetologica 73:271–276CrossRefGoogle Scholar
  31. 31.
    Miller SM, Wilkerson Jr TF (2000) Eleven Point River watershed inventory and assessment. Missouri Department of Conservation, West Plains, MOGoogle Scholar
  32. 32.
    Wilderson Jr TF (2004) Big Piney River watershed inventory and assessment. Missouri Department of Conservation, West Plains, MOGoogle Scholar
  33. 33.
    Hernández-Gómez O, Kimble SJA, Briggler JT, Williams RN (2017) Characterization of the cutaneous bacterial communities of two giant salamander subspecies. Microb Ecol 73:445–454.  https://doi.org/10.1007/s00248-016-0859-9 CrossRefGoogle Scholar
  34. 34.
    Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105:17994–17999CrossRefGoogle Scholar
  35. 35.
    Bolger D, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  36. 36.
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13:31.  https://doi.org/10.1186/1471-2105-13-31 CrossRefGoogle Scholar
  37. 37.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  38. 38.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefGoogle Scholar
  39. 39.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefGoogle Scholar
  40. 40.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefGoogle Scholar
  41. 41.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefGoogle Scholar
  42. 42.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267.  https://doi.org/10.1093/bioinformatics/btp636 CrossRefGoogle Scholar
  43. 43.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.  https://doi.org/10.1371/journal.pone.0009490 CrossRefGoogle Scholar
  44. 44.
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59.  https://doi.org/10.1038/nmeth.2276 CrossRefGoogle Scholar
  45. 45.
    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 CrossRefGoogle Scholar
  46. 46.
    Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li HZ (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113.  https://doi.org/10.1093/bioinformatics/bts342 CrossRefGoogle Scholar
  47. 47.
    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172CrossRefGoogle Scholar
  48. 48.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH (2017) Vegan: community ecology package. R package version 2.4–4 https://CRAN.R-project.org/package=vegan
  49. 49.
    Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  50. 50.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefGoogle Scholar
  51. 51.
    Oliveros JC (2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html
  52. 52.
    Roberts DW (2007) Labdsv: ordination and multivariate analysis for ecology. R package version 1.8–0. https://CRAN.R-project.org/package=labdsv
  53. 53.
    Wheeler BA, McCallum ML, Trauth SE (2002) Abnormalities in the Ozark hellbender, Cryptobranchus alleganiensis bishopi. J Ark Acad Sci 56:250–252Google Scholar
  54. 54.
    Nickerson CA, Ott CM, Castro SL, Garcia VM, Molina TC, Briggler JT, Pitt AL, Tavano JJ, Byram JK, Barrila J, Nickerson MA (2011) Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark hellbender salamanders. PLoS One 6:e28906.  https://doi.org/10.1371/journal.pone.0028906 CrossRefGoogle Scholar
  55. 55.
    Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb Ecol 71:221–232CrossRefGoogle Scholar
  56. 56.
    Hernández-Gómez O, Briggler JT, Williams RN (2018) Influence of Immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol Ecol 27:1915–1929CrossRefGoogle Scholar
  57. 57.
    Kohl KD, Skopec MM, Dearing MD (2014) Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Physiol 2:cou009.  https://doi.org/10.1093/conphys/cou009 CrossRefGoogle Scholar
  58. 58.
    Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250CrossRefGoogle Scholar
  59. 59.
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefGoogle Scholar
  60. 60.
    Lindström ES, Karnst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206CrossRefGoogle Scholar
  61. 61.
    Schlesner H, Jenkins C, Staley JT (2006) The phylum Verrucomicrobia: a phylogenetically heterogenous bacterial group. In: Dworkin M, Falkow S, Rosenberg E, Scheleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3 edn. Springer, New York, NY, pp 881–896CrossRefGoogle Scholar
  62. 62.
    Banning JL, Weddle AL, Wahl GW, Simon MA, Lauer A, Walters RL, Harris RN (2008) Antifungal skin bacteria, embryonic survival, and communal nesting in four-toed salamanders, Hemidactylium scutatum. Oecologia 156:423–429.  https://doi.org/10.1007/s00442-008-1002-5 CrossRefGoogle Scholar
  63. 63.
    Muletz CR, Myers JM, Domangue RJ, Herrick JB, Harris RN (2012) Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv 152:119–126.  https://doi.org/10.1016/j.biocon.2012.03.002 CrossRefGoogle Scholar
  64. 64.
    Walke JB, Harris RN, Reinert LK, Rollins-Smith LA, Woodhams DC (2011) Social immunity in amphibians: evidence for vertical transmission of innate defenses. Biotropica 43:396–400.  https://doi.org/10.1111/j.1744-7429.2011.00787.x CrossRefGoogle Scholar
  65. 65.
    Hughey MC, Delia J, BL K (2017) Diversity and stability of egg-bacterial assemblages: the role of paternal care in the glassfrog Hyalinobatrachium colymbiphyllum. Biotropica 49:792–802.  https://doi.org/10.1111/btp.12461 CrossRefGoogle Scholar
  66. 66.
    Pfingsten RA (1989) The status and distribution of the hellbender, Cryptobranchus alleganiensis, in Ohio. Ohio J Sci 89:3Google Scholar
  67. 67.
    Hiler WR, Wheeler BA, Trauth SE (2005) Abnormalities in the Ozark hellbender (Cryptobranchus alleganiensis bishopi) in Arkansas: a comparison between two rivers with a historical perspective. J Ark Acad Sci 59:88–94Google Scholar
  68. 68.
    Burgmeier NG, Sutton TM, Williams RN (2011) Spatial ecology of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. Herpetologica 67:135–145CrossRefGoogle Scholar
  69. 69.
    Peterson CL, Wilkinson RF (1996) Home range size of the hellbender (Cryptobranchus alleganiensis) in Missouri. Herpetol Rev 23:126–127Google Scholar
  70. 70.
    Briggler JT, Junge R, Wanner M, Weber M, Civiello J (2012) Amphibian chytrid fungus and antibiotic treatments for hellbenders (Cryptobranchu alleganiensis). Missouri Department of Conservation Report, JeffersonGoogle Scholar
  71. 71.
    Comte J, Fauteux L, del Giorgio PA (2013) Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00112
  72. 72.
    Moya A, Ferrer M (2016) Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 24:402–413.  https://doi.org/10.1016/j.tim.2016.02.002 CrossRefGoogle Scholar
  73. 73.
    Bodinof CM, Briggler JT, Junge RE, Mong T, Beringer J, Wanner MD, Schuette CD, Ettling J, Millspaugh JJ (2012) Survival and body condition of captive-reared juvenile Ozark hellbenders (Cryptobranchus alleganiensis bishopi) following translocation to the wild. Copeia 2012:150–159.  https://doi.org/10.1643/ch-11-024 CrossRefGoogle Scholar
  74. 74.
    Boerner JA (2014) Comparison of movement patterns in captive-released eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) using three different release methods. Thesis, Buffalo State University of New YorkGoogle Scholar
  75. 75.
    Rebollar EA, Hughey MC, Medina D, Harris RN, Ibanez R, Belden LK (2016) Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J 10:1682–1695.  https://doi.org/10.1038/ismej.2015.234 CrossRefGoogle Scholar
  76. 76.
    Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC (2014) Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS One 9:e87101.  https://doi.org/10.1371/journal.pone.0087101 CrossRefGoogle Scholar
  77. 77.
    Jiménez RR, Sommer S (2016) The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv 26:763–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Science, Policy, and ManagementUniversity of California-BerkeleyBerkeleyUSA
  2. 2.Missouri Department of ConservationJefferson CityUSA
  3. 3.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA

Personalised recommendations