Advertisement

Microbial Ecology

, Volume 77, Issue 3, pp 808–820 | Cite as

Co-occurrence of Anaerobes in Human Chronic Wounds

  • Yongwook Choi
  • Anirban Banerjee
  • Sean McNish
  • Kara S. Couch
  • Manolito G. Torralba
  • Sarah Lucas
  • Andrey Tovchigrechko
  • Ramana Madupu
  • Shibu Yooseph
  • Karen E. Nelson
  • Victoria K. ShanmugamEmail author
  • Agnes P. ChanEmail author
Human Microbiome

Abstract

Chronic wounds are wounds that have failed to heal after 3 months of appropriate wound care. Previous reports have identified a diverse collection of bacteria in chronic wounds, and it has been postulated that bacterial profile may contribute to delayed healing. The purpose of this study was to perform a microbiome assessment of the Wound Healing and Etiology (WE-HEAL) Study cohort, including underlying comorbidities less commonly studied in the context of chronic wounds, such as autoimmune diseases, and investigate possible relationships of the wound microbiota with clinical healing trends. We examined chronic wound specimens from 60 patients collected through the WE-HEAL Study using 16S ribosomal RNA gene sequencing. A group of co-occurring obligate anaerobes was identified from taxonomic analysis guided by Dirichlet multinomial mixtures (DMM) modeling. The group includes members of the Gram-positive anaerobic cocci (GPAC) of the Clostridia class (i.e., Anaerococcus, Finegoldia, and Peptoniphilus) and additional strict anaerobes (i.e., Porphyromonas and Prevotella). We showed that the co-occurring group of obligate anaerobes not only co-exists with commonly identified wound species (such as Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas, Corynebacterium, and Streptococcus), but importantly, they could also predominate the wound microbiota. Furthermore, examination of clinical comorbidities of the WE-HEAL specimens showed that specific obligate and facultative anaerobes were significantly reduced in wounds presented with autoimmune disease. With respect to future healing trends, no association with the wound microbiome community or the abundance of individual wound species could be established. In conclusion, we identified a co-occurring obligate anaerobic community type that predominated some human chronic wounds and underrepresentation of anaerobes in wounds associated with autoimmune diseases. Possible elucidation of host environments or key factors that influence anaerobe colonization warrants further investigation in a larger cohort.

Keywords

Chronic wound Obligate anaerobe Clostridia GPAC Autoimmune disease 

Notes

Funding Information

This work was supported by award R01NR013888 from the National Institute of Nursing Research and by award number UL1 TR000075 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through the Clinical and Translational Science Awards Program (CTSA).

Supplementary material

248_2018_1231_MOESM1_ESM.xlsx (122 kb)
ESM 1 (XLSX 121 kb)
248_2018_1231_MOESM2_ESM.docx (49 kb)
ESM 2 (DOCX 44 kb)

References

  1. 1.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771CrossRefGoogle Scholar
  2. 2.
    Escandon J, Vivas AC, Tang J, Rowland KJ, Kirsner RS (2011) High mortality in patients with chronic wounds. Wound Repair Regen 19:526–528CrossRefGoogle Scholar
  3. 3.
    Price P, Harding K (2000) The impact of foot complications on health-related quality of life in patients with diabetes. J Cutan Med Surg 4:45–50CrossRefGoogle Scholar
  4. 4.
    Price P, Harding K (2004) Cardiff Wound Impact Schedule: the development of a condition-specific questionnaire to assess health-related quality of life in patients with chronic wounds of the lower limb. Int Wound J 1:10–17CrossRefGoogle Scholar
  5. 5.
    Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25:9–18CrossRefGoogle Scholar
  6. 6.
    Shanmugam VK, Schilling A, Germinario A, Mete M, Kim P, Steinberg J et al (2012) Prevalence of immune disease in patients with wounds presenting to a tertiary wound healing centre. Int Wound J 9:403–411CrossRefGoogle Scholar
  7. 7.
    Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M et al (2009) Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4:e6462CrossRefGoogle Scholar
  8. 8.
    Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD (2012) Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect Dis 12:321CrossRefGoogle Scholar
  9. 9.
    Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, James G et al (2011) The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 19:532–541CrossRefGoogle Scholar
  10. 10.
    Gontcharova V, Youn E, Sun Y, Wolcott RD, Dowd SE (2010) A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol J 4:8–19CrossRefGoogle Scholar
  11. 11.
    Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA et al (2016) Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 24:163–174CrossRefGoogle Scholar
  12. 12.
    Loesche M, Gardner SE, Kalan L, Horwinski J, Zheng Q, Hodkinson BP et al (2017) Temporal stability in chronic wound microbiota is associated with poor healing. J Investig Dermatol 137:237–244CrossRefGoogle Scholar
  13. 13.
    Gardner SE, Hillis SL, Heilmann K, Segre JA, Grice EA (2013) The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 62:923–930CrossRefGoogle Scholar
  14. 14.
    Angel DE, Lloyd P, Carville K, Santamaria N (2011) The clinical efficacy of two semi-quantitative wound-swabbing techniques in identifying the causative organism(s) in infected cutaneous wounds. Int Wound J 8:176–185CrossRefGoogle Scholar
  15. 15.
    Levine NS, Lindberg RB, Mason Jr AD, Pruitt Jr BA (1976) The quantitative swab culture and smear: a quick, simple method for determining the number of viable aerobic bacteria on open wounds. J Trauma 16:89–94CrossRefGoogle Scholar
  16. 16.
    Sheehan P, Jones P, Caselli A, Giurini JM, Veves A (2003) Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care 26:1879–1882CrossRefGoogle Scholar
  17. 17.
    Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh M-J et al (2012) Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10:174CrossRefGoogle Scholar
  18. 18.
    Szpakowski S. YAP: a computationally efficient workflow for taxonomic analyses of bacterial 16S and fungal ITS sequences [internet]. GitHub; 2013. Available: http://github.com/shpakoo/YAP
  19. 19.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  20. 20.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefGoogle Scholar
  21. 21.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefGoogle Scholar
  22. 22.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  23. 23.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefGoogle Scholar
  24. 24.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  25. 25.
    Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One 7:e30126CrossRefGoogle Scholar
  26. 26.
    Yooseph S, Kirkness EF, Tran TM, Harkins DM, Jones MB, Torralba MG et al (2015) Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics 16:631CrossRefGoogle Scholar
  27. 27.
    Chao A. (1984) Nonparametric estimation of the number of classes in a population. Scand Stat Theory Appl [Board of the Foundation of the Scandinavian Journal of Statistics, Wiley] 11: 265–270Google Scholar
  28. 28.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217CrossRefGoogle Scholar
  29. 29.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package [internet]. 2018. Available: https://CRAN.R-project.org/package=vegan
  30. 30.
    Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics 47:8.13.1–8.1324CrossRefGoogle Scholar
  31. 31.
    Murphy EC, Frick I-M (2013) Gram-positive anaerobic cocci—commensals and opportunistic pathogens. FEMS Microbiol Rev 37:520–553CrossRefGoogle Scholar
  32. 32.
    Charles PGP, Uçkay I, Kressmann B, Emonet S, Lipsky BA (2015) The role of anaerobes in diabetic foot infections. Anaerobe 34:8–13CrossRefGoogle Scholar
  33. 33.
    Zeeuwen PLJM, Ederveen THA, van der Krieken DA, Niehues H, Boekhorst J, Kezic S et al (2017) Gram-positive anaerobe cocci are underrepresented in the microbiome of filaggrin-deficient human skin. J Allergy Clin Immunol 139:1368–1371CrossRefGoogle Scholar
  34. 34.
    Louie TJ, Bartlett JG, Tally FP, Gorbach SL (1976) Aerobic and anaerobic bacteria in diabetic foot ulcers. Ann Intern Med 85:461–463CrossRefGoogle Scholar
  35. 35.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192CrossRefGoogle Scholar
  36. 36.
    Murphy EC, Mörgelin M, Reinhardt DP, Olin AI, Björck L, Frick I-M (2014) Identification of molecular mechanisms used by Finegoldia magna to penetrate and colonize human skin. Mol Microbiol 94:403–417CrossRefGoogle Scholar
  37. 37.
    Kirketerp-Møller K, Jensen PØ, Fazli M, Madsen KG, Pedersen J, Moser C et al (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46:2717–2722CrossRefGoogle Scholar
  38. 38.
    Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231CrossRefGoogle Scholar
  39. 39.
    James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J et al (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44CrossRefGoogle Scholar
  40. 40.
    Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW et al (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19:45–46 48–50, 52–3CrossRefGoogle Scholar
  41. 41.
    Høiby N, Ciofu O, Johansen HK, Song Z-J, Moser C, Jensen PØ et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65CrossRefGoogle Scholar
  42. 42.
    Percival SL, Hill KE, Malic S, Thomas DW, Williams DW (2011) Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair Regen 19:1–9CrossRefGoogle Scholar
  43. 43.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongwook Choi
    • 1
  • Anirban Banerjee
    • 2
  • Sean McNish
    • 2
  • Kara S. Couch
    • 2
  • Manolito G. Torralba
    • 1
  • Sarah Lucas
    • 1
  • Andrey Tovchigrechko
    • 1
  • Ramana Madupu
    • 1
  • Shibu Yooseph
    • 1
  • Karen E. Nelson
    • 1
  • Victoria K. Shanmugam
    • 2
    Email author
  • Agnes P. Chan
    • 1
    Email author
  1. 1.J. Craig Venter InstituteRockvilleUSA
  2. 2.Ideas to Health Laboratory, Division of Rheumatology, School of Medicine and Health SciencesThe George Washington UniversityWashingtonUSA

Personalised recommendations