Advertisement

Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers

  • Patrick J. Kearns
  • Ashley N. Bulseco-McKim
  • Helen Hoyt
  • John H. Angell
  • Jennifer L. Bowen
Fungal Microbiology

Abstract

Enrichment of ecosystems with excess nutrients is occurring at an alarming rate and has fundamentally altered ecosystems worldwide. Salt marshes, which lie at the land-sea interface, are highly effective at removing anthropogenic nutrients through the action of macrophytes and through microbial processes in coastal sediments. The response of salt marsh bacteria to excess nitrogen has been documented; however, the role of fungi and their response to excess nitrogen in salt marsh sediments is not fully understood. Here, we document the response of salt marsh fungal communities to long-term excess nitrate in four distinct marsh habitats within a northern temperate marsh complex. We show that salt marsh fungal communities varied as a function of salt marsh habitat, with both fungal abundance and diversity increasing with carbon quantity. Nutrient enrichment altered fungal communities in all habitats through an increase in fungal abundance and the proliferation of putative fungal denitrifiers. Nutrient enrichment also altered marsh carbon quality in low marsh surface sediments where fungal response to nutrient enrichment was most dramatic, suggesting nutrient enrichment can alter organic matter quality in coastal sediments. Our results indicate that fungi, in addition to bacteria, likely play an important role in anaerobic decomposition of salt marsh sediment organic matter.

Keywords

Salt marsh Fungal ecology Fungal denitrification Nutrient enrichment Decomposition 

Notes

Acknowledgements

We would like to thank researchers of the TIDE Project (NSF DEB 0924287, DEB 0923689, DEB 0213767, DEB 1354494, DEB 1353140, and DEB 1719621) for maintaining the site and nutrient enrichment experiment. We would also like to thank Sarah Feinman and members of the Bowen lab for their help in field collections. FT-IR analysis was performed at the Woods Hole Research Center in the lab of Jonathan Sanderman. Additional support was received from the Plum Island LTER (NSF OCE 1673630, 0423565, 1058747). All sequence data from this study is available in the Sequence Read Archive under accession number SRP100756.

Funding Information

This work was funded by the NSF awards DEB 1350491 and DEB 1353140 to JLB and an NSF Research Experience for Undergraduates Award DBI-1359241 to Dr. Rachel Skvirsky.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2018_1223_MOESM1_ESM.docx (369 kb)
ESM 1 (DOCX 368 kb)

References

  1. 1.
    Galloway JN (1998) The global nitrogen cycle: changes and consequences. Nitrogen, the Confer-N-s. Elsevier, Amsterdam, pp 15–24CrossRefGoogle Scholar
  2. 2.
    Nixon SW, Oviatt CA, Frithsen J, Sullivan B (1986) Nutrients and the productivity of estuarine and coastal marine ecosystems. J Limnol Soc S Afr 12:43–71Google Scholar
  3. 3.
    Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165CrossRefGoogle Scholar
  4. 4.
    Valiela I, Teal JM, Sass W (1973) Nutrient retention in salt marsh plots experimentally fertilized with sewage sludge. Estuarine Coastal Mar Sci 1:261–269CrossRefGoogle Scholar
  5. 5.
    Elahi R, O’Connor MI, Byrnes JEK, Dunic J, Eriksson BK, Hensel MJS, Kearns PJ (2015) Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr Biol 25:1938–1943CrossRefPubMedGoogle Scholar
  6. 6.
    Koop-Jakobsen K, Giblin AE (2010) The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnol Oceanogr 55:789–802CrossRefGoogle Scholar
  7. 7.
    Rabalais NN, Turner RE, Wiseman Jr WJ (2002) Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst 33:235–263CrossRefGoogle Scholar
  8. 8.
    Brin LD, Valiela I, Goehringer D, Howes B (2010) Nitrogen interception and export by experimental salt marsh plots exposed to chronic nutrient addition. Mar Ecol Prog Ser 400:3–17CrossRefGoogle Scholar
  9. 9.
    Carpenter EJ, Capone DG (2016) Nitrogen in the marine environment. ElsevierGoogle Scholar
  10. 10.
    Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedPubMedCentralGoogle Scholar
  11. 11.
    Howes BL, Weiskel PK, Goehringer DD, Teal JM (1996) Interception of freshwater and nitrogen transport from uplands to coastal waters: the role of saltmarshes. Estuarine shores: evolution, environments and human alterations. Wiley, pp 287–310Google Scholar
  12. 12.
    Valiela I, Teal JM (1979) The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656CrossRefGoogle Scholar
  13. 13.
    McLeod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552–560CrossRefGoogle Scholar
  14. 14.
    Newell SY (1993) Decomposition of shoots of a salt-marsh grass. In: Jones JG (ed) Advances in microbial ecology. Springer US, Boston, MA, pp 301–326CrossRefGoogle Scholar
  15. 15.
    Benner R, Newell SY, Maccubbin AE, Hodson RE (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl. Environ. Microbiol. 48:36–40PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bergbauer M, Newell SY (1992) Contribution to lignocellulose degradation and DOC formation from a salt marsh macrophyte by the ascomycete Phaeosphaeria spartinicola. FEMS Microbiol Ecol 9:341–347CrossRefGoogle Scholar
  17. 17.
    Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol. 69:6676–6687CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489:550–553CrossRefPubMedGoogle Scholar
  19. 19.
    Deegan LA, Johnson DS, Warren RS et al (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392CrossRefPubMedGoogle Scholar
  20. 20.
    Valiela I, Teal JM, Allen SD, van Etten R, Goehringer D, Volkmann S (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J Exp Mar Bio Ecol 89:29–54CrossRefGoogle Scholar
  21. 21.
    Buchan A, Newell SY, Moreta JI, Moran MA (2002) Molecular characterization of bacterial and fungal decomposer communities in a southeastern US saltmarsh. Microb Ecol 43:329–340CrossRefPubMedGoogle Scholar
  22. 22.
    Newell SY, Arsuffi TL, Palm LA (1996) Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades. Oecologia 108:495–502CrossRefPubMedGoogle Scholar
  23. 23.
    Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech. 33:32–46CrossRefPubMedGoogle Scholar
  24. 24.
    Newell SY (2001) Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnol Oceanogr 46:573–583CrossRefGoogle Scholar
  25. 25.
    Newell SY, Blum LK, Crawford RE, Dai T, Dionne M (2000) Autumnal biomass and potential productivity of salt marsh fungi from 29 to 43 north latitude along the United States Atlantic Coast. Appl Environ Microbiol 66:180–185CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM (2006) A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698CrossRefPubMedGoogle Scholar
  27. 27.
    Ainsworth GC (2008) Ainsworth & Bisby’s dictionary of the fungi. CABIGoogle Scholar
  28. 28.
    Richards TA, MDM J, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci. 4:495–522CrossRefGoogle Scholar
  29. 29.
    Kis-Papo T (2005) Marine fungal communities. Mycol Ser. 23:61CrossRefGoogle Scholar
  30. 30.
    Dini-Andreote F, Pylro VS, Baldrian P et al (2016) Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities. ISME J 10:1–14CrossRefGoogle Scholar
  31. 31.
    Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:1–11CrossRefGoogle Scholar
  32. 32.
    Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 25:1–13CrossRefGoogle Scholar
  33. 33.
    Bertness MD (1991) Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138–148CrossRefGoogle Scholar
  34. 34.
    Levine JM, Brewer JS, Bertness MD (1998) Nutrients, competition and plant zonation in a New England salt marsh. J Ecol 86:285–292CrossRefGoogle Scholar
  35. 35.
    Crain CM, Silliman BR, Bertness SL, Bertness MD (2004) Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85:2539–2549CrossRefGoogle Scholar
  36. 36.
    Johnson DS, Warren RS, Deegan LA, Mozdzer TJ (2016) Saltmarsh plant responses to eutrophication. Ecol Appl 26:2647–2659PubMedGoogle Scholar
  37. 37.
    Deegan LA, Bowen JL, Drake D et al (2007) Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecol Appl 17:s42–s63CrossRefGoogle Scholar
  38. 38.
    Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML (2011) Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5:1540–1548CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kearns PJ, Angell JH, Howard EM et al (2016) Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat. Commun. 7:1–9CrossRefGoogle Scholar
  40. 40.
    Bowen JL, Crump BC, Deegan LA, Hobbie JE (2009) Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. ISME J 3:924–934CrossRefPubMedGoogle Scholar
  41. 41.
    Walters W, Hyde ER, Berg-Lyons D et al (2016) Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1.  https://doi.org/10.1128/mSystems.00009-15
  42. 42.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Team, R Core (2018) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  44. 44.
    Oksanen J, Kindt R, Legendre P et al (2007) The vegan package. Community ecology package, vol 10, pp 631–637Google Scholar
  45. 45.
    Margenot AJ, Calderón FJ, Bowles TM, Parikh SJ, Jackson LE (2015) Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci Soc Am J 79:772–782CrossRefGoogle Scholar
  46. 46.
    Margenot AJ, Calderon FJ, Parikh SJ (2016) Limitations and potential of spectral subtractions in Fourier-transform infrared spectroscopy of soil samples. Soil Sci Soc Am J 80:10–26CrossRefGoogle Scholar
  47. 47.
    Hsu J-H, Lo S-L (1999) Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environ. Pollut. 104:189–196CrossRefGoogle Scholar
  48. 48.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Aronesty E (2011) ea-utils: command-line tools for processing biological sequencing data. Expression Analysis, DurhamGoogle Scholar
  50. 50.
    Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59CrossRefPubMedGoogle Scholar
  51. 51.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919Google Scholar
  53. 53.
    Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 186:281–285CrossRefPubMedGoogle Scholar
  54. 54.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  55. 55.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  56. 56.
    Maeda K, Spor A, Edel-Hermann V, Heraud C, Breuil MC, Bizouard F, Toyoda S, Yoshida N, Steinberg C, Philippot L (2015) N2O production, a widespread trait in fungi. Sci. Rep. 5:9697CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kearns PJ, Fischer S, Fernández-Beaskoetxea S et al (2017) Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front. Microbiol. 8:1–12CrossRefGoogle Scholar
  58. 58.
    Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814CrossRefPubMedGoogle Scholar
  59. 59.
    Valiela I, Teal JM, Persson NY (1976) Production and dynamics of experimentally enriched salt marsh vegetation: belowground biomass. Limnol Oceanogr 21:245–252CrossRefGoogle Scholar
  60. 60.
    Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164:347–355CrossRefGoogle Scholar
  61. 61.
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, la Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887CrossRefGoogle Scholar
  63. 63.
    Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771CrossRefPubMedGoogle Scholar
  64. 64.
    Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115CrossRefGoogle Scholar
  65. 65.
    v Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213–229CrossRefGoogle Scholar
  66. 66.
    Zheng Y, Chen L, Luo C-Y et al (2016) Plant identity exerts stronger effect than fertilization on soil arbuscular mycorrhizal fungi in a sown pasture. Microb Ecol 72:647–658CrossRefPubMedGoogle Scholar
  67. 67.
    Zhou J, Jiang X, Zhou B, Zhao B, Ma M, Guan D, Li J, Chen S, Cao F, Shen D, Qin J (2016) Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol Biochem 95:135–143CrossRefGoogle Scholar
  68. 68.
    Torta L, Lo Piccolo S, Piazza G, Burruano S, Colombo P, Ottonello D, Perrone R, di Maida G, Pirrotta M, Tomasello A, Calvo S (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol. 17:505–511CrossRefPubMedGoogle Scholar
  69. 69.
    Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu C, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, DeCrappeo NM, du G, Firn J, Hautier Y, Heckman RW, Hector A, HilleRisLambers J, Iribarne O, Klein JA, Knops JMH, la Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O'Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520CrossRefPubMedGoogle Scholar
  70. 70.
    De Filippis F, Laiola M, Blaiotta G, Ercolini D (2017) Different amplicon targets for sequencing-based studies of fungal diversity. Appl. Environ. Microbiol. 83:e00905–e00917CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Averill C, Waring B (2018) Nitrogen limitation of decomposition and decay: how can it occur? Glob. Chang. Biol. 24:1417–1427CrossRefPubMedGoogle Scholar
  72. 72.
    Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257CrossRefGoogle Scholar
  73. 73.
    Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13:819–828CrossRefPubMedGoogle Scholar
  74. 74.
    Henriksen TM, Breland TA (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134CrossRefGoogle Scholar
  75. 75.
    van Diepen LTA, Frey SD, Landis EA, Morrison EW, Pringle A (2017) Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology 98:5–11CrossRefPubMedGoogle Scholar
  76. 76.
    Fox L, Valiela I, Kinney EL (2012) Vegetation cover and elevation in long-term experimental nutrient-enrichment plots in great Sippewissett Salt Marsh, Cape Cod, Massachusetts: implications for eutrophication and sea level rise. Estuar. Coasts 35:445–458CrossRefGoogle Scholar
  77. 77.
    Peng X, Ji Q, Angell JH, Kearns PJ, Yang HJ, Bowen JL, Ward BB (2016) Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J Geophys Res Biogeosci 121:2082–2095CrossRefGoogle Scholar
  78. 78.
    Hamersley MR, Howes BL (2005) Coupled nitrification-denitrification measured in situ in a Spartina alterniflora marsh with a 15NH4 + tracer. Mar Ecol Prog Ser 299:123–135CrossRefGoogle Scholar
  79. 79.
    Shoun H, Fushinobu S, Jiang L, Kim SW, Wakagi T (2012) Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc Lond B Biol Sci 367:1186–1194CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Belser LW (1977) Nitrate reduction to nitrite, a possible source of nitrite for growth of nitrite-oxidizing bacteria. Appl. Environ. Microbiol. 34:403–410PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ravishankara a R, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125CrossRefPubMedGoogle Scholar
  82. 82.
    Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP (2017) Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. Environ. Microbiol. 19:2507–2519CrossRefPubMedGoogle Scholar
  83. 83.
    Kearns PJ, Angell JH, Feinman SG, Bowen JL (2015) Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments. Estuar. Coast. Shelf Sci. 154:39–47CrossRefGoogle Scholar
  84. 84.
    Moseman-Valtierra S, Gonzalez R, Kroeger KD, Tang J, Chao WC, Crusius J, Bratton J, Green A, Shelton J (2011) Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 45:4390–4397CrossRefGoogle Scholar
  85. 85.
    Kenny C, Yamulki S, Blackwell M, Maltby E, French P, Birgand F (2005) The release of nitrous oxide from the intertidal zones of two European estuaries in response to increased ammonium and nitrate loading. Water Air Soil Pollut Focus 4:61–66CrossRefGoogle Scholar
  86. 86.
    Hirota M, Senga Y, Seike Y, Nohara S, Kunii H (2007) Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68:597–603CrossRefPubMedGoogle Scholar
  87. 87.
    Ji Q, Babbin AR, Peng X, Bowen JL, Ward BB (2015) Nitrogen substrate-dependent nitrous oxide cycling in salt marsh sediments. J. Mar. Res. 73:71–92CrossRefGoogle Scholar
  88. 88.
    Middelburg JJ, Klaver G, Nieuwenhuize J, Markusse RM, Vlug T, van der Nat FJWA (1995) Nitrous oxide emissions from estuarine intertidal sediments. Hydrobiologia 311:43–55CrossRefGoogle Scholar
  89. 89.
    Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40:1430–1437CrossRefGoogle Scholar
  90. 90.
    Solomon D, Lehmann J, Kinyangi J (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang BiolGoogle Scholar
  91. 91.
    Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci. 171:27–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Marine and Environmental Sciences, Marine Science CenterNortheastern UniversityNahantUSA
  2. 2.Biology DepartmentTufts UniversityMedfordUSA
  3. 3.Department of BiologyCarleton CollegeNorthfieldUSA
  4. 4.Department of BiologyUniversity of Massachusetts BostonBostonUSA
  5. 5.Biology DepartmentBoston UniversityBostonUSA

Personalised recommendations