Advertisement

Microbial Ecology

, Volume 77, Issue 1, pp 217–229 | Cite as

Effects of an Early Successional Biological Soil Crust from a Temperate Coastal Sand Dune (NE Germany) on Soil Elemental Stoichiometry and Phosphatase Activity

  • Iris SchaubEmail author
  • Christel Baum
  • Rhena Schumann
  • Ulf Karsten
Soil Microbiology
  • 232 Downloads

Abstract

Early successional biological soil crusts (BSCs), a consortium of bacteria, cyanobacteria, and other microalgae, are one of the first settlement stages on temperate coastal sand dunes. In this study, we investigated the algal biomass (Chlorophyll a (Chl a)), algal (Calgal) and microbial carbon (Cmic), elemental stoichiometry (C:N:P), and acid and alkaline phosphatase activity (AcidPA and AlkPA) of two algae-dominated BSCs from a coastal white dune (northeast Germany, on the southwestern Baltic Sea) which differed in the exposure to wind forces. The dune sediment (DS) was generally low in total carbon (TC), nitrogen (TN), and phosphorus (TP). These elements, together with the soil organic matter (SOM) accumulated in the BSC layer and in the sediment underneath (crust sediment CS), leading to initial soil development. The more disturbed BSC (BSC1) exhibited lower algal and microbial biomass and lower Calgal/Cmic ratios than the undisturbed BSC (BSC2). The BSC1 accumulated more organic carbon (OC) than BSC2. However, the OC in the BSC2 was more effectively incorporated into Cmic than in the BSC1, as indicated by lower OC:Cmic ratios. The AcidPA (1.1–1.3 μmol g−1 DM h−1 or 147–178 μg g−1 DM h−1) and AlkPA (2.7–5.5 μmol g−1 DM h−1 or 372–764 μg g−1 DM h−1) were low in both BSCs. The PA, together with the elemental stoichiometry, indicated no P limitation of both BSCs but rather water limitation followed by N limitation for the algae community and a carbon limitation for the microbial community. Our results explain the observed distribution of early successional and more developed BSCs on the sand dune.

Keywords

Biological soil crust Early successional stage Coastal sand dune Soil elemental stoichiometry Soil fertility Phosphatase activity Nutrient limitation 

Notes

Acknowledgements

The authors thank Dr. Tatiana Mikhailyuk (National Academy of Science of Ukraine, Institute of Botany) for identifying the BSC’s phototrophic microorganisms. Furthermore, we thank Britta Balz, Elena Heilmann (University of Rostock, Soil Science), and Rita Wulff (University of Rostock, Biological Station Zingst) for valuable technical assistance.

Funding

This research was financially supported by the funding line strategic networks of the Leibniz Association within the scope of the Leibniz ScienceCampus Phosphorus Research Rostock (SAS-2015-IOW-LWC, www.sciencecampus-rostock.de) and was closely connected to the Research Training Group “Baltic TRANSCOAST” (DFG, Deutsche Forschungsgemeinschaft; grant number GRK 2000/1; publication no. GRK2000/0014).

References

  1. 1.
    Martínez ML, Psuty NP, Lubke RA (2004) A perspective on coastal dunes. In: Coast. Dunes, Ecol. Conserv. Springer, Berlin, Heidelberg, pp 3–10Google Scholar
  2. 2.
    Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J. Arid Environ. 21:165–191CrossRefGoogle Scholar
  3. 3.
    Zhang Y (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chin. Sci. Bull. 50:117–121.  https://doi.org/10.1007/BF02897513 CrossRefGoogle Scholar
  4. 4.
    Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 3–30Google Scholar
  5. 5.
    Belnap J (2003) The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189. https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2Google Scholar
  6. 6.
    Weber B, Büdel B, Belnap J (2016) Biological soil crusts: an organizing principle in drylands. doi: 10.1007/978-3-319-30214-0Google Scholar
  7. 7.
    Karsten U, Herburger K, Holzinger A (2016) Living in biological soil crust communities of African deserts-physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J. Plant Physiol. 194:2–12.  https://doi.org/10.1016/j.jplph.2015.09.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 217–240Google Scholar
  9. 9.
    Van Ancker JAM Den, Jungerius PD, Mur LR (1985) The role of algae in the stabilization of coastal dune blowouts. Earth Surf. Process. Landf. 10:189–192. doi:  https://doi.org/10.1002/esp.3290100210
  10. 10.
    Danin A, Bar-Or Y, Dor I, Yisraeli T (1990) The role of cyanobacterial in stabilization of sand dunes in southern Israel. Horizons Geogr:169–178.  https://doi.org/10.2307/23701553
  11. 11.
    Martens DA, Frankenberger WT (1992) Decomposition of bacterial polymers in soil and their influence on soil structure. Biol. Fertil. Soils 13:65–73.  https://doi.org/10.1007/BF00337337 CrossRefGoogle Scholar
  12. 12.
    Belnap J, Eldridge D (2001) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 363–383Google Scholar
  13. 13.
    Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Veg. Sci. Appl. Rangel. Anal. Manag. Springer Netherlands, Dordrecht, pp 135–169Google Scholar
  14. 14.
    Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur. J. Soil Biol. 48:48–55.  https://doi.org/10.1016/j.ejsobi.2011.07.009 CrossRefGoogle Scholar
  15. 15.
    Aggenbach CJS, Kooijman AM, Fujita Y, van der Hagen H, van Til M, Cooper D, Jones L (2017) Does atmospheric nitrogen deposition lead to greater nitrogen and carbon accumulation in coastal sand dunes? Biol. Conserv. 212:416–422.  https://doi.org/10.1016/j.biocon.2016.12.007 CrossRefGoogle Scholar
  16. 16.
    Johnsen I, Christensen SN, Riis-Nielsen T (2014) Nitrogen limitation in the coastal heath at Anholt, Denmark. J. Coast. Conserv. 18:369–382.  https://doi.org/10.1007/s11852-014-0323-2 CrossRefGoogle Scholar
  17. 17.
    Tackett NW, Craft CB (2010) Ecosystem development on a coastal barrier island dune chronosequence. J. Coast. Res. 26:736–742.  https://doi.org/10.2112/08-1167.1 CrossRefGoogle Scholar
  18. 18.
    Rowe EC, Evans CD, Emmett BA, Reynolds B, Helliwell RC, Coull MC, Curtis CJ (2006) Vegetation type affects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Air Soil Pollut. 177:335–347.  https://doi.org/10.1007/s11270-006-9177-z CrossRefGoogle Scholar
  19. 19.
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459–462.  https://doi.org/10.1038/ngeo1486 CrossRefGoogle Scholar
  20. 20.
    Magee WE, Burris RH (1954) Fixation of N2 and utilization of combined nitrogen by Nostoc muscorum. Am. J. Bot. 41:777–782.  https://doi.org/10.2307/2438966 CrossRefGoogle Scholar
  21. 21.
    Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol. 132:617–625.  https://doi.org/10.1111/j.1469-8137.1996.tb01880.x CrossRefGoogle Scholar
  22. 22.
    Belnap J, Kaltenecker JH, Rosentreter R, et al (2001) Biological soil crusts: ecology and management. United States Department of the Interior, Denver, ColoradoGoogle Scholar
  23. 23.
    Belnap J, Prasse R, Harpe KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 281–300Google Scholar
  24. 24.
    Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 241–261Google Scholar
  25. 25.
    Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10:551–562.  https://doi.org/10.1038/nrmicro2831 CrossRefPubMedGoogle Scholar
  26. 26.
    Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol. Fertil. Soils 18:209–215.  https://doi.org/10.1007/BF00647668 CrossRefGoogle Scholar
  27. 27.
    Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot. Rev. 30:92–128.  https://doi.org/10.1007/BF02858614 CrossRefGoogle Scholar
  28. 28.
    Rao DLN, Burns RG (1990) Use of blue-green algae and bryophyte biomass as a source of nitrogen for oil-seed rape. Biol. Fertil. Soils 10:61–64.  https://doi.org/10.1007/BF00336126 CrossRefGoogle Scholar
  29. 29.
    Belnap J (2001) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer, Berlin Heidelberg, pp 167–174CrossRefGoogle Scholar
  30. 30.
    Spohn M, Ermak A, Kuzyakov Y (2013) Microbial gross organic phosphorus mineralization can be stimulated by root exudates—a 33P isotopic dilution study. Soil Biol. Biochem. 65:254–263.  https://doi.org/10.1016/j.soilbio.2013.05.028 CrossRefGoogle Scholar
  31. 31.
    Filippelli GM (2017) The global phosphorus cycle. In: Lal R, Stewart BA (eds) Soil phosphorus; Adv. soil Sci. CRC Press, pp 1–21Google Scholar
  32. 32.
    Doolette AL, Smernik RJ (2011) Soil organic phosphorus speciation using spectroscopic techniques. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus action, Biol. Process. soil phosphorus Cycl. Springer, pp 3–36Google Scholar
  33. 33.
    Khan MS, Zaidi A, Ahmad E (2014) Mechanisms of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing Microorg. Springer, pp 31–62Google Scholar
  34. 34.
    Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus Action, Soil Biol., 26th ed. Springer, pp 169–198Google Scholar
  35. 35.
    Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J. Microbiol. Biotechnol. 24:1059–1065.  https://doi.org/10.1007/s11274-007-9575-4 CrossRefGoogle Scholar
  36. 36.
    Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 30:479–485.  https://doi.org/10.2134/jeq2001.302479x CrossRefPubMedGoogle Scholar
  37. 37.
    Fox TR (1995) The influence of low molecular weight organic acids on properties and processes in forest soils. In: McFee WW, Kelly JM (eds) Carbon Forms Funct. For. Soils. Soil Science Society of America, pp 43–62Google Scholar
  38. 38.
    Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus Action, Soil Biol., 26th ed. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 215–243Google Scholar
  39. 39.
    Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit. Rev. Microbiol. 10:317–391.  https://doi.org/10.3109/10408418209113567 CrossRefPubMedGoogle Scholar
  40. 40.
    Chapman VJ (1976) Coastal vegetation, 2nd ed. doi: 10.1016/B978-0-08-020896-1.50012-XGoogle Scholar
  41. 41.
    Komárek J, Anagnostidis K (1998) Süsswasserflora von Mitteleuropao, Bd. 19/1: Cyanoprokaryota 1 Teil: Chroococcales. Spektrum Akademischer VerlagGoogle Scholar
  42. 42.
    Komárek J, Anagnostidis K (2005) Süsswasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota 2. Teil: Oscillatoriales. Spektrum Akademischer VerlagGoogle Scholar
  43. 43.
    Komárek J (2013) Süsswasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota 3. Teil: Heterocytous genera. Springer SpektrumGoogle Scholar
  44. 44.
    Krammer K, Lange-Bertalot H (1991) Süsswasserflora von Mitteleuropao, Bd. 2/3: Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer VerlagGoogle Scholar
  45. 45.
    Krammer K, Lange-Bertalot H (1991) Süsswasserflora von Mitteleuropao, Bd. 2/4: Bacillariophyceae 4. Teil: Achnanthaceae. Gustav Fischer VerlagGoogle Scholar
  46. 46.
    Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen, 2nd ed. doi: 10.1007/978-3-642-39462-1Google Scholar
  47. 47.
    Sponagel H, Grottenthaler W, Hartmann K-J et al (2005) Bodenkundliche Kartieranleitung, Ad-hoc-Arbeitsgruppe Boden der Staatlichen Geologischen Dienste und der Bundesanstalt für Geowissenschaften und Rohstoffe5th edn. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  48. 48.
    Lan S, Wu L, Zhang D, Hu C, Liu Y (2011) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol. Biochem. 43:857–861.  https://doi.org/10.1016/j.soilbio.2010.12.007 CrossRefGoogle Scholar
  49. 49.
    Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46:115–126.  https://doi.org/10.1007/s11099-008-0019-7 CrossRefGoogle Scholar
  50. 50.
    Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19:703–707.  https://doi.org/10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  51. 51.
    Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol. Biochem. 28:25–31.  https://doi.org/10.1016/0038-0717(95)00102-6 CrossRefGoogle Scholar
  52. 52.
    Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol. Biochem. 36:5–7.  https://doi.org/10.1016/j.soilbio.2003.10.002 CrossRefGoogle Scholar
  53. 53.
    Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301–307.  https://doi.org/10.1016/0038-0717(69)90012-1 CrossRefGoogle Scholar
  54. 54.
    Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol. Biochem. 9:167–172.  https://doi.org/10.1016/0038-0717(77)90070-0 CrossRefGoogle Scholar
  55. 55.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:9Google Scholar
  56. 56.
    Belnap J (2001) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer, Berlin Heidelberg, pp 177–191CrossRefGoogle Scholar
  57. 57.
    Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol. 57:229–247.  https://doi.org/10.1007/s00248-008-9449-9 CrossRefPubMedGoogle Scholar
  58. 58.
    Kidron GJ (1999) Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process. 13:1665–1682.  https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1665::AID-HYP836>3.0.CO;2-R CrossRefGoogle Scholar
  59. 59.
    Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J. Phycol. 32:774–782.  https://doi.org/10.1111/j.0022-3646.1996.00774.x CrossRefGoogle Scholar
  60. 60.
    Görs S, Schumann R, Häubner N, Karsten U (2007) Fungal and agal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterior. Biodegrad. 60:50–59CrossRefGoogle Scholar
  61. 61.
    Pinckney J, Zingmark RG (1993) Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897.  https://doi.org/10.2307/1352447 CrossRefGoogle Scholar
  62. 62.
    Cahoon LB, Cooke JE (1992) Benthic microalgal production in Onslow Bay, North Carolina, USA. Mar. Ecol. Prog. Ser. 84:185–196.  https://doi.org/10.3354/meps084185 CrossRefGoogle Scholar
  63. 63.
    Brito AC, Benjoucef I, Jesus B et al (2013) Seasonality of microphytobenthos revealed by remote-sensing in a south European estuary. Cont. Shelf Res. 66:83–91.  https://doi.org/10.1016/j.csr.2013.07.004 CrossRefGoogle Scholar
  64. 64.
    Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 22:737–749.  https://doi.org/10.1111/geb.12029 CrossRefGoogle Scholar
  65. 65.
    Schulz K, Mikhailyuk T, Dreßler M, Leinweber P, Karsten U (2016) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microb. Ecol. 71:178–193.  https://doi.org/10.1007/s00248-015-0691-7 CrossRefPubMedGoogle Scholar
  66. 66.
    Koerselman W, Meuleman A (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450.  https://doi.org/10.2307/2404783 CrossRefGoogle Scholar
  67. 67.
    Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone Meml. Vol. Liverpool University press, Liverpool, pp 176–192Google Scholar
  68. 68.
    Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32:119–137.  https://doi.org/10.1093/plankt/fbp098 CrossRefGoogle Scholar
  69. 69.
    Bu C, Wu S, Xie Y, Zhang X (2013) The study of biological soil crusts: hotspots and prospects. Clean - Soil, Air, Water 41:899–906.  https://doi.org/10.1002/clen.201100675 CrossRefGoogle Scholar
  70. 70.
    Hacker N, Ebeling A, Gessler A, Gleixner G, González Macé O, de Kroon H, Lange M, Mommer L, Eisenhauer N, Ravenek J, Scheu S, Weigelt A, Wagg C, Wilcke W, Oelmann Y (2015) Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18:1356–1365.  https://doi.org/10.1111/ele.12530 CrossRefPubMedGoogle Scholar
  71. 71.
    Henry HAL (2013) Soil extracellular enzyme dynamics in a changing climate. Soil Biol. Biochem. 56:53–59.  https://doi.org/10.1016/j.soilbio.2012.10.022 CrossRefGoogle Scholar
  72. 72.
    Nannipieri P, Johnson RL, Paul EA (1978) Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10:223–229.  https://doi.org/10.1016/0038-0717(78)90100-1 CrossRefGoogle Scholar
  73. 73.
    Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37:937–944.  https://doi.org/10.1016/j.soilbio.2004.09.014 CrossRefGoogle Scholar
  74. 74.
    Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14:423–427.  https://doi.org/10.1016/0038-0717(82)90099-2 CrossRefGoogle Scholar
  75. 75.
    Hou E, Chen C, Wen D, Liu X (2015) Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China. Sci. Total Environ. 515–516:83–91.  https://doi.org/10.1016/j.scitotenv.2015.02.044 CrossRefPubMedGoogle Scholar
  76. 76.
    Zhang W, Qiao W, Gao D, Dai Y, Deng J, Yang G, Han X, Ren G (2018) Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. Catena 161:85–95.  https://doi.org/10.1016/J.CATENA.2017.10.021 CrossRefGoogle Scholar
  77. 77.
    Borowik A, Wyszkowska J (2016) Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil Environ. 62:250–255.  https://doi.org/10.17221/158/2016-PSE CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockRostockGermany
  2. 2.Faculty of Agricultural and Environmental Sciences, Soil ScienceUniversity of RostockRostockGermany

Personalised recommendations