Advertisement

Microbial Ecology

, Volume 77, Issue 1, pp 76–86 | Cite as

Divergent Influence to a Pathogen Invader by Resident Bacteria with Different Social Interactions

  • Chun-Hui Gao
  • Ming Zhang
  • Yichao Wu
  • Qiaoyun Huang
  • Peng Cai
Environmental Microbiology

Abstract

Bacterial social interaction is a potential influencing factor in determining the fate of invading pathogens in diverse environments. In this study, interactions between two representative resident species (Bacillus subtilis and Pseudomonas putida) and a leading food-borne disease causative pathogen (Vibrio parahaemolyticus) were examined. An antagonistic effect toward V. parahaemolyticus was observed for B. subtilis but not for P. putida. However, the relative richness of the pathogen remained rather high in B. subtilis co-cultures and was, unexpectedly, not sensitive to the initial inoculation ratios. Furthermore, two approaches were found to be efficient at modulating the relative richness of the pathogen. (1) The addition of trace glycerol and manganese to Luria-Bertani medium (LBGM) reduced the richness of V. parahaemolyticus in the co-culture with B. subtilis and in contrast, increased its richness in the co-culture with P. putida, although it did not affect the growth of V. parahaemolyticus by its own. (2) The relative richness of V. parahaemolyticus on semisolid medium decreased significantly as a function of an agar gradient, ranging from 0 to 2%. Furthermore, we explored the molecular basis of bacterial interaction through transcriptomic analysis. In summary, we investigated the interactions between a pathogen invader and two resident bacteria species, showing that the different influences on a pathogen by different types of interactions can be modulated by chemicals and medium fluidity.

Keywords

Pathogen Social interaction Bacillus subtilis Pseudomonas putida Vibrio parahaemolyticus 

Notes

Acknowledgements

This work was supported by the National Key Research Program of China (2016YFD0800206) and National Natural Science Foundation of China (41522106).

Author’s Contributions

P.C. conceived the study. C.H.G. and M.Z. performed experiments. C.H.G., Y.W., Q.H. and P.C. analyzed and interpreted the data. C.H.G. and P. C. wrote the paper with the help of all authors.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

248_2018_1207_MOESM1_ESM.pdf (201 kb)
Supplementary Figure S1 (PDF 200 kb)
248_2018_1207_MOESM2_ESM.pdf (43 kb)
Supplementary Figure S2 (PDF 42.5 kb)
248_2018_1207_MOESM3_ESM.pdf (185 kb)
Supplementary Figure S3 (PDF 185 kb)
248_2018_1207_MOESM4_ESM.pdf (243 kb)
Supplementary Figure S4 (PDF 242 kb)
248_2018_1207_MOESM5_ESM.pdf (342 kb)
Supplementary Figure S5 (PDF 342 kb)
248_2018_1207_MOESM6_ESM.xlsx (49 kb)
Supplementary Table S1 (XLSX 49.4 kb)
248_2018_1207_MOESM7_ESM.xlsx (11 kb)
Supplementary Table S2 (XLSX 11.4 kb)
248_2018_1207_MOESM8_ESM.pdf (465 kb)
Supplementary Figure S6 (PDF 464 kb)

References

  1. 1.
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575.  https://doi.org/10.1038/nrmicro.2016.94 CrossRefPubMedGoogle Scholar
  2. 2.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193.  https://doi.org/10.1128/CMR.15.2.167-193.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108.  https://doi.org/10.1038/nrmicro821 CrossRefPubMedGoogle Scholar
  4. 4.
    Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91.  https://doi.org/10.1016/j.tim.2013.12.004 CrossRefPubMedGoogle Scholar
  5. 5.
    DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP (2014) Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect Immun 82:4718–4728.  https://doi.org/10.1128/IAI.02198-14 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S (2017) In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 7:106.  https://doi.org/10.3389/fcimb.2017.00106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S (2014) Interspecies competition triggers virulence and mutability in Candida albicans–Pseudomonas aeruginosa mixed biofilms. ISME J 8:1974–1988.  https://doi.org/10.1038/ismej.2014.53 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de Sablet T, Chassard C, Bernalier-Donadille A et al (2009) Human microbiota-secreted factors inhibit Shiga toxin synthesis by Enterohemorrhagic Escherichia coli O157:H7. Infect Immun 77:783–790.  https://doi.org/10.1128/IAI.01048-08 CrossRefPubMedGoogle Scholar
  9. 9.
    Curtis MM, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V (2014) The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16:759–769.  https://doi.org/10.1016/j.chom.2014.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goswami K, Chen C, Xiaoli L, Eaton KA, Dudley EG (2015) Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. Coli strain increases toxin production and virulence in a germfree mouse model. Infect Immun 83:4185–4193.  https://doi.org/10.1128/IAI.00663-15 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954.  https://doi.org/10.1111/1574-6976.12023 CrossRefPubMedGoogle Scholar
  12. 12.
    van Elsas JD, Hill P, Chronakova A et al (2007) Survival of genetically marked Escherichia coli O157 : H7 in soil as affected by soil microbial community shifts. ISME J 1:204–214.  https://doi.org/10.1038/ismej.2007.21 CrossRefPubMedGoogle Scholar
  13. 13.
    van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci 109:1159–1164.  https://doi.org/10.1073/pnas.1109326109 CrossRefPubMedGoogle Scholar
  14. 14.
    Yao Z, Wang H, Wu L, Wu J, Brookes PC, Xu J (2014) Interaction between the microbial community and invading Escherichia coli O157:H7 in soils from vegetable fields. Appl Environ Microbiol 80:70–76.  https://doi.org/10.1128/AEM.03046-13 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and Enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926.  https://doi.org/10.1128/AEM.69.8.4915-4926.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    You Y, Rankin SC, Aceto HW, Benson CE, Toth JD, Dou Z (2006) Survival of Salmonella enterica Serovar Newport in manure and manure-amended soils. Appl Environ Microbiol 72:5777–5783.  https://doi.org/10.1128/AEM.00791-06 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu NT, Bauchan GR, Francoeur CB, Shelton DR, Lo YM, Nou X (2016) Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens listeria monocytogenes, Salmonella enterica, and Enterohemorrhagic Escherichia coli. Food Control 65:14–20.  https://doi.org/10.1016/j.foodcont.2016.01.004 CrossRefGoogle Scholar
  18. 18.
    Bradford SA, Morales VL, Zhang W, Harvey RW, Packman AI, Mohanram A, Welty C (2013) Transport and fate of microbial pathogens in agricultural settings. Crit Rev Environ Sci Technol 43:775–893.  https://doi.org/10.1080/10643389.2012.710449 CrossRefGoogle Scholar
  19. 19.
    Wang R, Huang J, Zhang W, Lin G, Lian J, Jiang L, Lin H, Wang S, Wang S (2011) Detection and identification of Vibrio parahaemolyticus by multiplex PCR and DNA–DNA hybridization on a microarray. J Genet Genomics 38:129–135.  https://doi.org/10.1016/j.jgg.2011.02.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 6:144.  https://doi.org/10.3389/fmicb.2015.00144 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Su Y-C, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558.  https://doi.org/10.1016/j.fm.2007.01.005 CrossRefPubMedGoogle Scholar
  22. 22.
    Hara-Kudo Y, Sugiyama K, Nishibuchi M, Chowdhury A, Yatsuyanagi J, Ohtomo Y, Saito A, Nagano H, Nishina T, Nakagawa H, Konuma H, Miyahara M, Kumagai S (2003) Prevalence of pandemic thermostable direct Hemolysin-producing Vibrio parahaemolyticus O3:K6 in seafood and the coastal environment in Japan. Appl Environ Microbiol 69:3883–3891.  https://doi.org/10.1128/AEM.69.7.3883-3891.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li B, Ju F, Cai L, Zhang T (2015) Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environ Sci Technol 49:10492–10502.  https://doi.org/10.1021/acs.est.5b02345 CrossRefPubMedGoogle Scholar
  24. 24.
    Li X, Harwood VJ, Nayak B, Staley C, Sadowsky MJ, Weidhaas J (2015) A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. Environ Sci Technol 49:7319–7329.  https://doi.org/10.1021/acs.est.5b00980 CrossRefPubMedGoogle Scholar
  25. 25.
    Mallon CA, Roux X, Doorn GS et al (2018) The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J 1:728–741.  https://doi.org/10.1038/s41396-017-0003-y CrossRefGoogle Scholar
  26. 26.
    Shemesh M, Chai Y (2013) A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J Bacteriol 195:2747–2754.  https://doi.org/10.1128/JB.00028-13 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Smith MD, Roheim CA, Crowder LB, Halpern BS, Turnipseed M, Anderson JL, Asche F, Bourillon L, Guttormsen AG, Khan A, Liguori LA, McNevin A, O'Connor MI, Squires D, Tyedmers P, Brownstein C, Carden K, Klinger DH, Sagarin R, Selkoe KA (2010) Sustainability and global seafood. Science 327:784–786.  https://doi.org/10.1126/science.1185345 CrossRefPubMedGoogle Scholar
  28. 28.
    Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269F.  https://doi.org/10.2471/BLT.12.116152 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68.  https://doi.org/10.1046/j.1462-2920.2000.00084.x CrossRefPubMedGoogle Scholar
  30. 30.
    Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5:973–985.  https://doi.org/10.1038/ismej.2010.196 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41.  https://doi.org/10.1093/nar/gkx319 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Weller DM (2007) Pseudomonas biocontrol agents of Soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256.  https://doi.org/10.1094/PHYTO-97-2-0250 CrossRefPubMedGoogle Scholar
  33. 33.
    Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76.  https://doi.org/10.1038/nature15744 CrossRefPubMedGoogle Scholar
  34. 34.
    Kim W, Levy SB, Foster KR (2016) Rapid radiation in bacteria leads to a division of labour. Nat Commun 7:10508.  https://doi.org/10.1038/ncomms10508 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR (2015) Biofilm formation as a response to ecological competition. PLoS Biol 13:e1002191.  https://doi.org/10.1371/journal.pbio.1002191 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ren D, Madsen JS, Sørensen SJ, Burmølle M (2015) High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J 9:81–89.  https://doi.org/10.1038/ismej.2014.96 CrossRefPubMedGoogle Scholar
  37. 37.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  39. 39.
    Ren D, Madsen JS, de la Cruz-Perera CI et al (2014) High-throughput screening of multispecies biofilm formation and quantitative PCR-based assessment of individual species proportions, useful for exploring interspecific bacterial interactions. Microb Ecol 68:146–154.  https://doi.org/10.1007/s00248-013-0315-z CrossRefPubMedGoogle Scholar
  40. 40.
    Zhong S, Joung J-G, Zheng Y, Chen YR, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput Illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 2011:pdb.prot5652:940–949.  https://doi.org/10.1101/pdb.prot5652 CrossRefPubMedGoogle Scholar
  41. 41.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.  https://doi.org/10.1186/s13059-014-0550-8 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol 16:284–287.  https://doi.org/10.1089/omi.2011.0118 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Agricultural Microbiology, College of Resources and EnvironmentHuazhong Agricultural UniversityWuhanChina

Personalised recommendations