Advertisement

Vermamoeba vermiformis: a Free-Living Amoeba of Interest

  • Vincent Delafont
  • Marie-Helene Rodier
  • Elodie Maisonneuve
  • Estelle Cateau
Environmental Microbiology

Abstract

Free-living amoebae are protists that are widely distributed in the environment including water, soil, and air. Although the amoebae of the genus Acanthamoeba are still the most studied, other species, such as Vermamoeba vermiformis (formerly Hartmannella vermiformis), are the subject of increased interest. Found in natural or man-made aquatic environments, V. vermiformis can support the multiplication of other microorganisms and is able to harbor and potentially protect pathogenic bacteria or viruses. This feature is to be noted because of the presence of this thermotolerant amoeba in hospital water networks. As a consequence, this protist could be implicated in health concerns and be indirectly responsible for healthcare-related infections. This review highlights, among others, the consequences of V. vermiformis relationships with other microorganisms and shows that this free-living amoeba species is therefore of interest for public health.

Keywords

Vermamoeba vermiformis Free-living amoebae Protists Water Microorganisms 

Notes

Acknowledgments

The authors are grateful to Jeffrey Arsham for revising the English text and to Prof. Yann Hechard for his helpful comments.

References

  1. 1.
    Cavalier-Smith T, Chao EE, Snell EA et al (2014) Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 81:71–85.  https://doi.org/10.1016/j.ympev.2014.08.012 PubMedCrossRefGoogle Scholar
  2. 2.
    Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514.  https://doi.org/10.1111/j.1550-7408.2012.00644.x PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Page FC (1967) Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J Protozool 14:499–521PubMedCrossRefGoogle Scholar
  4. 4.
    Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 162:545–570.  https://doi.org/10.1016/j.protis.2011.04.004 PubMedCrossRefGoogle Scholar
  5. 5.
    Cavalier-Smith T, Fiore-Donno AM, Chao E et al (2015) Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 83:293–304.  https://doi.org/10.1016/j.ympev.2014.08.011 PubMedCrossRefGoogle Scholar
  6. 6.
    Brown MW, Silberman JD, Spiegel FW (2011) “Slime molds” among the Tubulinea (Amoebozoa): molecular systematics and taxonomy of Copromyxa. Protist 162:277–287.  https://doi.org/10.1016/j.protis.2010.09.003 PubMedCrossRefGoogle Scholar
  7. 7.
    Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C, Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, la Terza A, Lamentowicz M, Mazei Y, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103.  https://doi.org/10.1016/j.soilbio.2017.04.001 CrossRefGoogle Scholar
  8. 8.
    Kowit JD, Fulton C (1974) Programmed synthesis of tubulin for the flagella that develop during cell differentiation in Naegleria gruberi. Proc Natl Acad Sci U S A 71:2877–2881PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weijer CJ, Duschl G, David CN (1984) Dependence of cell-type proportioning and sorting on cell cycle phase in Dictyostelium discoideum. J Cell Sci 70:133–145PubMedGoogle Scholar
  10. 10.
    Kang S, Tice AK, Spiegel FW et al (2017) Between a pod and a hard test: the deep evolution of amoebae. Mol Biol Evol 34:2258–2270.  https://doi.org/10.1093/molbev/msx162 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fouque E, Héchard Y, Hartemann P, Humeau P, Trouilhé MC (2015) Sensitivity of Vermamoeba (Hartmannella) vermiformis cysts to conventional disinfectants and protease. J Water Health 13:302–310.  https://doi.org/10.2166/wh.2014.154 PubMedCrossRefGoogle Scholar
  12. 12.
    Fouque E, Yefimova M, Trouilhé M-C, Quellard N, Fernandez B, Rodier MH, Thomas V, Humeau P, Héchard Y (2015) Morphological study of the encystment and excystment of Vermamoeba vermiformis revealed original traits. J Eukaryot Microbiol 62:327–337.  https://doi.org/10.1111/jeu.12185 PubMedCrossRefGoogle Scholar
  13. 13.
    Fučíková K, Lahr DJG (2016) Uncovering cryptic diversity in two Amoebozoan species using complete mitochondrial genome sequences. J Eukaryot Microbiol 63:112–122.  https://doi.org/10.1111/jeu.12253 PubMedCrossRefGoogle Scholar
  14. 14.
    Fouque E, Trouilhé M-C, Thomas V, Hartemann P, Rodier MH, Héchard Y (2012) Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot Cell 11:382–387.  https://doi.org/10.1128/EC.05301-11 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fouque E, Trouilhé M-C, Thomas V, Humeau P, Héchard Y (2014) Encystment of Vermamoeba (Hartmannella) vermiformis: effects of environmental conditions and cell concentration. Exp Parasitol 145(Suppl):S62–S68.  https://doi.org/10.1016/j.exppara.2014.03.029 PubMedCrossRefGoogle Scholar
  16. 16.
    Pickup ZL, Pickup R, Parry JD (2007) Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol 61:264–272.  https://doi.org/10.1111/j.1574-6941.2007.00346.x PubMedCrossRefGoogle Scholar
  17. 17.
    Delafont V, Brouke A, Bouchon D, Moulin L, Héchard Y (2013) Microbiome of free-living amoebae isolated from drinking water. Water Res 47:6958–6965.  https://doi.org/10.1016/j.watres.2013.07.047 PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fields BS, Nerad TA, Sawyer TK et al (1990) Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis. J Protozool 37:581–583PubMedCrossRefGoogle Scholar
  20. 20.
    Schulz-Bohm K, Geisen S, Wubs ERJ, Song C, de Boer W, Garbeva P (2017) The prey’s scent—volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J 11:817–820.  https://doi.org/10.1038/ismej.2016.144 PubMedCrossRefGoogle Scholar
  21. 21.
    RC E MUSCLE: multiple sequence alignment with high accuracy and high throughput. - PubMed - NCBI. https://www-ncbi-nlm-nih-gov.inee.bib.cnrs.fr/pubmed/15034147. Accessed 12 Feb 2018
  22. 22.
    R: The R Project for Statistical Computing. https://www.r-project.org/. Accessed 12 Feb 2018
  23. 23.
    al PE et APE: Analyses of Phylogenetics and Evolution in R language. - PubMed - NCBI. https://www-ncbi-nlm-nih-gov.inee.bib.cnrs.fr/pubmed/14734327. Accessed 12 Feb 2018
  24. 24.
    Warnes GR, Bolker B, Bonebakker L, et al (2016) gplots: Various R Programming Tools for Plotting Data. https://cran.r-project.org/web/packages/gplots/index.html. Accessed 12 Feb 2018
  25. 25.
    Bullerwell CE, Burger G, Gott JM, Kourennaia O, Schnare MN, Gray MW (2010) Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa. Eukaryot Cell 9:762–773.  https://doi.org/10.1128/EC.00013-10 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87:131–140.  https://doi.org/10.1016/j.jhin.2014.05.001 PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson OR (2008) The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. J Eukaryot Microbiol 55:145–150.  https://doi.org/10.1111/j.1550-7408.2008.00319.x PubMedCrossRefGoogle Scholar
  28. 28.
    Kuiper MW, Valster RM, Wullings BA, Boonstra H, Smidt H, van der Kooij D (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl Environ Microbiol 72:5750–5756.  https://doi.org/10.1128/AEM.00085-06 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Coşkun KA, Ozçelik S, Tutar L et al (2013) Isolation and identification of free-living amoebae from tap water in Sivas, Turkey. Biomed Res Int 2013:675145–675148.  https://doi.org/10.1155/2013/675145 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Montalbano Di Filippo M, Santoro M, Lovreglio P et al (2015) Isolation and molecular characterization of free-living amoebae from different water sources in Italy. Int J Environ Res Public Health 12:3417–3427.  https://doi.org/10.3390/ijerph120403417 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Niyyati M, Lasgerdi Z, Lorenzo-Morales J (2015) Detection and molecular characterization of potentially pathogenic free-living amoebae from water sources in Kish Island, southern Iran. Microbiol Insights 8:1–6.  https://doi.org/10.4137/MBI.S24099 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64:1822–1824PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dobrowsky PH, Khan S, Cloete TE, Khan W (2016) Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater. Parasit Vectors 9:539.  https://doi.org/10.1186/s13071-016-1829-2 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Abdul Majid MA, Mahboob T, Mong BGJ, Jaturas N, Richard RL, Tian-Chye T, Phimphila A, Mahaphonh P, Aye KN, Aung WL, Chuah J, Ziegler AD, Yasiri A, Sawangjaroen N, Lim YAL, Nissapatorn V (2017) Pathogenic waterborne free-living amoebae: an update from selected southeast Asian countries. PLoS One 12:e0169448.  https://doi.org/10.1371/journal.pone.0169448 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Al-Herrawy AZ, Gad MA (2017) Assessment of two different drinking water treatment plants for the removal of free-living amoebae, Egypt. Iran J Parasitol 12:413–422PubMedPubMedCentralGoogle Scholar
  36. 36.
    Milanez GD, Masangkay FR, Thomas RC, Ordona MOGO, Bernales GQ, Corpuz VCM, Fortes HSV, Garcia CMS, Nicolas LC, Nissapatorn V (2017) Molecular identification of Vermamoeba vermiformis from freshwater fish in lake Taal, Philippines. Exp Parasitol 183:201–206.  https://doi.org/10.1016/j.exppara.2017.09.009 PubMedCrossRefGoogle Scholar
  37. 37.
    Park JS (2016) First record of potentially pathogenic amoeba Vermamoeba vermiformis (Lobosea: Gymnamoebia) isolated from a freshwater of Dokdo Island in the East Sea, Korea. Anim Syst Evol Divers 32:1–8CrossRefGoogle Scholar
  38. 38.
    Reyes-Batlle M, Wagner C, Zamora-Herrera J, Vargas-Mesa A, Sifaoui I, González AC, López-Arencibia A, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J (2016) Isolation of thermotolerant Vermamoeba vermiformis strains from water sources in Lanzarote Island, Canary Islands, Spain. Acta Parasitol 61:650–653.  https://doi.org/10.1515/ap-2016-0088 PubMedCrossRefGoogle Scholar
  39. 39.
    Valster RM, Wullings BA, van den Berg R, van der Kooij D (2011) Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 77:7321–7328.  https://doi.org/10.1128/AEM.05575-11 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wannasan A, Uparanukraw P, Songsangchun A, Morakote N (2013) Potentially pathogenic free-living amoebae in some flood-affected areas during 2011 Chiang Mai flood. Rev Inst Med Trop Sao Paulo 55:411–416.  https://doi.org/10.1590/S0036-46652013000600007 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Valster RM, Wullings BA, Bakker G, Smidt H, van der Kooij D (2009) Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences. Appl Environ Microbiol 75:4736–4746.  https://doi.org/10.1128/AEM.02629-08 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hsu B-M, Huang C-C, Chen J-S, Chen NH, Huang JT (2011) Comparison of potentially pathogenic free-living amoeba hosts by Legionella spp. in substrate-associated biofilms and floating biofilms from spring environments. Water Res 45:5171–5183.  https://doi.org/10.1016/j.watres.2011.07.019 PubMedCrossRefGoogle Scholar
  43. 43.
    Nazar M, Haghighi A, Taghipour N, Ortega-Rivas A, Tahvildar-Biderouni F, Mojarad EN, Eftekhar M (2012) Molecular identification of Hartmannella vermiformis and Vannella persistens from man-made recreational water environments, Tehran, Iran. Parasitol Res 111:835–839.  https://doi.org/10.1007/s00436-012-2906-x PubMedCrossRefGoogle Scholar
  44. 44.
    Armand B, Motazedian MH, Asgari Q (2016) Isolation and identification of pathogenic free-living amoeba from surface and tap water of Shiraz City using morphological and molecular methods. Parasitol Res 115:63–68.  https://doi.org/10.1007/s00436-015-4721-7 PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745PubMedCrossRefGoogle Scholar
  46. 46.
    Wang H, Edwards M, Falkinham JO, Pruden A (2012) Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 78:6285–6294.  https://doi.org/10.1128/AEM.01492-12 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gianinazzi C, Schild M, Zumkehr B, Wüthrich F, Nüesch I, Ryter R, Schürch N, Gottstein B, Müller N (2010) Screening of Swiss hot spring resorts for potentially pathogenic free-living amoebae. Exp Parasitol 126:45–53.  https://doi.org/10.1016/j.exppara.2009.12.008 PubMedCrossRefGoogle Scholar
  48. 48.
    Solgi R, Niyyati M, Haghighi A, Mojarad EN (2012) Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp. in Hot Springs of Ardebil Province, Northwest Iran. Iran J Parasitol 7:47–52PubMedPubMedCentralGoogle Scholar
  49. 49.
    Lasjerdi Z, Niyyati M, Lorenzo-Morales J, Haghighi A, Taghipour N (2015) Ophthalmology hospital wards contamination to pathogenic free living amoebae in Iran. Acta Parasitol 60:417–422.  https://doi.org/10.1515/ap-2015-0057 PubMedCrossRefGoogle Scholar
  50. 50.
    Lasjerdi Z, Niyyati M, Haghighi A, Shahabi S, Biderouni FT, Taghipour N, Eftekhar M, Nazemalhosseini Mojarad E (2011) Potentially pathogenic free-living amoebae isolated from hospital wards with immunodeficient patients in Tehran, Iran. Parasitol Res 109:575–580.  https://doi.org/10.1007/s00436-011-2288-5 PubMedCrossRefGoogle Scholar
  51. 51.
    Pagnier I, Valles C, Raoult D, La Scola B (2015) Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb Pathog 80:14–20.  https://doi.org/10.1016/j.micpath.2015.02.006 PubMedCrossRefGoogle Scholar
  52. 52.
    Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham III JO, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79:3185–3192.  https://doi.org/10.1128/AEM.03823-12 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rhoads WJ, Ji P, Pruden A, Edwards MA (2015) Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap. Microbiome 3:67.  https://doi.org/10.1186/s40168-015-0134-1 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Garcia A, Goñi P, Cieloszyk J, Fernandez MT, Calvo-Beguería L, Rubio E, Fillat MF, Peleato ML, Clavel A (2013) Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques. Environ Sci Technol 47:3132–3140.  https://doi.org/10.1021/es400160k PubMedCrossRefGoogle Scholar
  55. 55.
    Conza L, Pagani SC, Gaia V (2013) Presence of Legionella and free-living amoebae in composts and bioaerosols from composting facilities. PLoS One 8:e68244.  https://doi.org/10.1371/journal.pone.0068244 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ramirez E, Robles E, Martinez B, Ayala R, Sainz G, Martinez ME, Gonzalez ME (2014) Distribution of free-living amoebae in a treatment system of textile industrial wastewater. Exp Parasitol 145(Suppl):S34–S38.  https://doi.org/10.1016/j.exppara.2014.07.006 PubMedCrossRefGoogle Scholar
  57. 57.
    Aitken D, Hay J, Kinnear FB, Kirkness CM, Lee WR, Seal DV (1996) Amebic keratitis in a wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmannella infection. Ophthalmology 103:485–494PubMedCrossRefGoogle Scholar
  58. 58.
    Inoue T, Asari S, Tahara K, Hayashi K, Kiritoshi A, Shimomura Y (1998) Acanthamoeba keratitis with symbiosis of Hartmannella ameba. Am J Ophthalmol 125:721–723PubMedCrossRefGoogle Scholar
  59. 59.
    Lorenzo-Morales J, Martínez-Carretero E, Batista N, Álvarez-Marín J, Bahaya Y, Walochnik J, Valladares B (2007) Early diagnosis of amoebic keratitis due to a mixed infection with Acanthamoeba and Hartmannella. Parasitol Res 102:167–169.  https://doi.org/10.1007/s00436-007-0754-x PubMedCrossRefGoogle Scholar
  60. 60.
    Abedkhojasteh H, Niyyati M, Rahimi F, Heidari M, Farnia S, Rezaeian M (2013) First report of Hartmannella keratitis in a cosmetic soft contact lens wearer in Iran. Iran J Parasitol 8:481–485PubMedPubMedCentralGoogle Scholar
  61. 61.
    Niyyati M, Rahimi F, Lasejerdi Z, Rezaeian M (2014) Potentially pathogenic free-living amoebae in contact lenses of the asymptomatic contact lens wearers. Iran J Parasitol 9:14–19PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hajialilo E, Niyyati M, Solaymani M, Rezaeian M (2015) Pathogenic free-living amoebae isolated from contact lenses of keratitis patients. Iran J Parasitol 10:541–546PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kinnear FB (2003) Cytopathogenicity of acanthamoeba, vahlkampfia and hartmannella: quantative & qualitative in vitro studies on keratocytes. J Inf Secur 46:228–237Google Scholar
  64. 64.
    Cervero-Aragó S, Sommer R, Araujo RM (2014) Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. Water Res 67:299–309.  https://doi.org/10.1016/j.watres.2014.09.023 PubMedCrossRefGoogle Scholar
  65. 65.
    Wang H, Masters S, Falkinham JO et al (2015) Distribution system water quality affects responses of opportunistic pathogen gene markers in household water heaters. Environ Sci Technol 49:8416–8424.  https://doi.org/10.1021/acs.est.5b01538 PubMedCrossRefGoogle Scholar
  66. 66.
    Wadowsky RM, Wilson TM, Kapp NJ et al (1991) Multiplication of Legionella spp. in tap water containing Hartmannella vermiformis. Appl Environ Microbiol 57:1950–1955PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hsu B-M, Lin C-L, Shih F-C (2009) Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. Water Res 43:2817–2828.  https://doi.org/10.1016/j.watres.2009.04.002 PubMedCrossRefGoogle Scholar
  68. 68.
    Murga R, Forster TS, Brown E et al (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiol Read Engl 147:3121–3126.  https://doi.org/10.1099/00221287-147-11-3121 CrossRefGoogle Scholar
  69. 69.
    Buse HY, Donohue MJ, Ashbolt NJ (2013) Hartmannella vermiformis inhibition of Legionella pneumophila cultivability. Microb Ecol 66:715–726.  https://doi.org/10.1007/s00248-013-0250-z PubMedCrossRefGoogle Scholar
  70. 70.
    Pickup ZL, Pickup R, Parry JD (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Appl Environ Microbiol 73:2631–2634PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cateau E, Imbert C, Rodier M-H (2008) Hartmanella vermiformis can be permissive for Pseudomonas aeruginosa. Lett Appl Microbiol 47:475–477.  https://doi.org/10.1111/j.1472-765X.2008.02457.x PubMedCrossRefGoogle Scholar
  72. 72.
    Delafont V, Mougari F, Cambau E, Joyeux M, Bouchon D, Héchard Y, Moulin L (2014) First evidence of amoebae-mycobacteria association in drinking water network. Environ Sci Technol 48:11872–11882.  https://doi.org/10.1021/es5036255 PubMedCrossRefGoogle Scholar
  73. 73.
    Cabello-Vílchez AM, Mena R, Zuñiga J, Cermeño P, Martín-Navarro CM, González AC, López-Arencibia A, Reyes-Batlle M, Piñero JE, Valladares B, Lorenzo-Morales J (2014) Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Exp Parasitol 145(Suppl):S127–S130.  https://doi.org/10.1016/j.exppara.2014.02.014 PubMedCrossRefGoogle Scholar
  74. 74.
    Wheat WH, Casali AL, Thomas V, Spencer JS, Lahiri R, Williams DL, McDonnell GE, Gonzalez-Juarrero M, Brennan PJ, Jackson M (2014) Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS Negl Trop Dis 8:e3405.  https://doi.org/10.1371/journal.pntd.0003405 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Santic M, Ozanic M, Semic V, Pavokovic G, Mrvcic V, Kwaik YA (2011) Intra-vacuolar proliferation of F. novicida within H. vermiformis. Front Microbiol 2:78.  https://doi.org/10.3389/fmicb.2011.00078 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Axelsson-Olsson D, Olofsson J, Svensson L, Griekspoor P, Waldenström J, Ellström P, Olsen B (2010) Amoebae and algae can prolong the survival of Campylobacter species in co-culture. Exp Parasitol 126:59–64PubMedCrossRefGoogle Scholar
  77. 77.
    Cateau E, Maisonneuve E, Peguilhan S, Quellard N, Hechard Y, Rodier MH (2014) Stenotrophomonas maltophilia and Vermamoeba vermiformis relationships: bacterial multiplication and protection in amoebal-derived structures. Res Microbiol 165:847–851.  https://doi.org/10.1016/j.resmic.2014.10.004 PubMedCrossRefGoogle Scholar
  78. 78.
    Delafont V, Samba-Louaka A, Bouchon D, Moulin L, Héchard Y (2015) Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba. Environ Microbiol Rep 7:970–978.  https://doi.org/10.1111/1758-2229.12343 PubMedCrossRefGoogle Scholar
  79. 79.
    Schulz F, Lagkouvardos L. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/24500618. Accessed 8 Feb 2018
  80. 80.
    Horn M, Wagner M, Müller KD et al (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiol Read Engl 146(Pt 5):1231–1239.  https://doi.org/10.1099/00221287-146-5-1231 CrossRefGoogle Scholar
  81. 81.
    Benamar S, Bou Khalil JY, Blanc-Tailleur C, Bilen M, Barrassi L, la Scola B (2017) Developmental cycle and genome analysis of Protochlamydia massiliensis sp. nov. a new species in the Parachlamydiacae family. Front Cell Infect Microbiol 7:385.  https://doi.org/10.3389/fcimb.2017.00385 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bou Khalil JY, Benamar S, Di Pinto F et al (2017) Protochlamydia phocaeensis sp. nov., a new Chlamydiales species with host dependent replication cycle. Microbes Infect 19:343–350.  https://doi.org/10.1016/j.micinf.2017.02.003 PubMedCrossRefGoogle Scholar
  83. 83.
    Bou Khalil JY, Benamar S, Baudoin J-P, Croce O, Blanc-Tailleur C, Pagnier I, Raoult D, la Scola B (2016) Developmental cycle and genome analysis of “Rubidus massiliensis,” a new Vermamoeba vermiformis pathogen. Front Cell Infect Microbiol 6:31.  https://doi.org/10.3389/fcimb.2016.00031 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cateau E, Mergey T, Kauffmann-Lacroix C, Rodier MH (2009) Relationships between free living amoebae and Exophiala dermatitidis: a preliminary study. Med Mycol 47:115–118PubMedCrossRefGoogle Scholar
  85. 85.
    Vanessa B, Virginie M, Nathalie Q, Marie-Hélène R, Christine I (2012) Hartmannella vermiformis can promote proliferation of Candida spp. in tap-water. Water Res 46:5707–5714.  https://doi.org/10.1016/j.watres.2012.07.054 PubMedCrossRefGoogle Scholar
  86. 86.
    Maisonneuve E, Cateau E, Kaaki S, Rodier M-H (2016) Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells. Parasitol Res 115:4097–4105.  https://doi.org/10.1007/s00436-016-5182-3 PubMedCrossRefGoogle Scholar
  87. 87.
    Cateau E, Hechard Y, Fernandez B, Rodier MH (2014) Free living amoebae could enhance Fusarium oxysporum growth. Fungal Ecol 8:12–17.  https://doi.org/10.1016/j.funeco.2013.12.006 CrossRefGoogle Scholar
  88. 88.
    Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N, Klose T, Rossmann M, Colson P, Raoult D, la Scola B (2015) Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol 89:6585–6594.  https://doi.org/10.1128/JVI.00115-15 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bajrai LH, Benamar S, Azhar EI, Robert C, Levasseur A, Raoult D, la Scola B (2016) Kaumoebavirus, a new virus that clusters with Faustoviruses and Asfarviridae. Viruses 8.  https://doi.org/10.3390/v8110278
  90. 90.
    Andreani J, Khalil JYB, Baptiste E, Hasni I, Michelle C, Raoult D, Levasseur A, la Scola B (2017) Orpheovirus IHUMI-LCC2: a new virus among the giant viruses. Front Microbiol 8:2643.  https://doi.org/10.3389/fmicb.2017.02643 PubMedCrossRefGoogle Scholar
  91. 91.
    Wang H, Pryor MA, Edwards MA, Falkinham III JO, Pruden A (2013) Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. Water Res 47:5760–5772.  https://doi.org/10.1016/j.watres.2013.06.052 PubMedCrossRefGoogle Scholar
  92. 92.
    Wadowsky RM, Butler LJ, Cook MK et al (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl Environ Microbiol 54:2677–2682PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kuiper MW, Wullings BA, Akkermans AD et al (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ji W-T, Hsu B-M, Chang T-Y, Hsu TK, Kao PM, Huang KH, Tsai SF, Huang YL, Fan CW (2014) Surveillance and evaluation of the infection risk of free-living amoebae and Legionella in different aquatic environments. Sci Total Environ 499:212–219.  https://doi.org/10.1016/j.scitotenv.2014.07.116 PubMedCrossRefGoogle Scholar
  95. 95.
    Scheikl U, Sommer R, Kirschner A, Rameder A, Schrammel B, Zweimüller I, Wesner W, Hinker M, Walochnik J (2014) Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. Eur J Protistol 50:422–429.  https://doi.org/10.1016/j.ejop.2014.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Buse HY, Ashbolt NJ (2011) Differential growth of Legionella pneumophila strains within a range of amoebae at various temperatures associated with in-premise plumbing. Lett Appl Microbiol 53:217–224.  https://doi.org/10.1111/j.1472-765X.2011.03094.x PubMedCrossRefGoogle Scholar
  97. 97.
    Ji P, Rhoads WJ, Edwards MA, Pruden A (2017) Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME J 11:1318–1330.  https://doi.org/10.1038/ismej.2017.14 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Naylor J, Cianciotto NP (2004) Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 241:249–256.  https://doi.org/10.1016/j.femsle.2004.10.028 PubMedCrossRefGoogle Scholar
  99. 99.
    Rossier O, Dao J, Cianciotto NP (2008) The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol 74:753–761.  https://doi.org/10.1128/AEM.01944-07 PubMedCrossRefGoogle Scholar
  100. 100.
    Rossier O, Dao J, Cianciotto NP (2009) A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiol Read Engl 155:882–890.  https://doi.org/10.1099/mic.0.023218-0 CrossRefGoogle Scholar
  101. 101.
    Tyson JY, Vargas P, Cianciotto NP (2014) The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiol Read Engl 160:2732–2744.  https://doi.org/10.1099/mic.0.082750-0 CrossRefGoogle Scholar
  102. 102.
    Gunderson FF, Mallama CA, Fairbairn SG, Cianciotto NP (2015) Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells. Infect Immun 83:1008–1018.  https://doi.org/10.1128/IAI.03102-14 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Abdel-Nour M, Duncan C, Prashar A, Rao C, Ginevra C, Jarraud S, Low DE, Ensminger AW, Terebiznik MR, Guyard C (2014) The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 80:1441–1454.  https://doi.org/10.1128/AEM.03254-13 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chang C-W, Kao C-H, Liu Y-F (2009) Heterogeneity in chlorine susceptibility for Legionella pneumophila released from Acanthamoeba and Hartmannella. J Appl Microbiol 106:97–105.  https://doi.org/10.1111/j.1365-2672.2008.03980.x PubMedCrossRefGoogle Scholar
  105. 105.
    Lu J, Struewing I, Vereen E, Kirby AE, Levy K, Moe C, Ashbolt N (2016) Molecular detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J Appl Microbiol 120:509–521.  https://doi.org/10.1111/jam.12996 PubMedCrossRefGoogle Scholar
  106. 106.
    Sanchez-Hidalgo A, Obregón-Henao A, Wheat WH, Jackson M, Gonzalez-Juarrero M (2017) Mycobacterium bovis hosted by free-living-amoebae permits their long-term persistence survival outside of host mammalian cells and remain capable of transmitting disease to mice. Environ Microbiol 19:4010–4021.  https://doi.org/10.1111/1462-2920.13810 PubMedCrossRefGoogle Scholar
  107. 107.
    Pickup ZL, Pickup R, Parry JD (2007) A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella vermiformis in the presence of suspended and attached Escherichia coli K12. FEMS Microbiol Ecol 59:556–563PubMedCrossRefGoogle Scholar
  108. 108.
    La Scola B, Audic S, Robert C et al (2003) A giant virus in amoebae. Science 299:2033.  https://doi.org/10.1126/science.1081867 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l’EauUniversité de PoitiersPoitiers CedexFrance
  2. 2.Laboratoire de parasitologie et mycologieCHU La MilètriePoitiers CedexFrance

Personalised recommendations