Microbial Ecology

, Volume 76, Issue 4, pp 1089–1101 | Cite as

High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish

  • Nerea Arias-Jayo
  • Leticia Abecia
  • Laura Alonso-Sáez
  • Andoni Ramirez-Garcia
  • Alfonso Rodriguez
  • Miguel A. Pardo
Host Microbe Interactions


Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal microbiota and inflammation in zebrafish. Microbial composition of HFD-fed animals was analysed and compared to controls by 16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested. Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signalling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade inflammation.


Zebrafish Microbiota Inflammation High-fat diet 



The authors thank the veterinary faculty of the Universidad Complutense de Madrid for histological preparation. This research was funded by the MAROMEGA Project (Basque Country Government, Economic Development and Structure) and a Sira Carrasco scholarship (Spanish Society for Paediatric Gastroenterology, Hepatology and Nutrition). LA was funded by the Ramón y Cajal program of the Spanish Ministry of Economy and Competitiveness (MINECO). NAJ received a scholarship from the Basque Country Agriculture, Fisheries and Food Department. This is the contribution number 867 of Azti.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

248_2018_1198_Fig7_ESM.gif (1 kb)

(GIF 805 bytes)

248_2018_1198_MOESM1_ESM.tif (57 kb)
High resolution image (TIF 57 kb)
248_2018_1198_Fig8_ESM.gif (2 kb)

(GIF 1 kb)

248_2018_1198_MOESM2_ESM.tif (336 kb)
High resolution image (TIF 335 kb)
248_2018_1198_Fig9_ESM.gif (27 kb)

(GIF 26 kb)

248_2018_1198_MOESM3_ESM.tif (75 kb)
High resolution image (TIF 75 kb)


  1. 1.
    Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:14. CrossRefGoogle Scholar
  2. 2.
    Araujo JR, Tomas J, Brenner C, Sansonetti PJ (2017) Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 141:97–106. CrossRefPubMedGoogle Scholar
  3. 3.
    D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451(Pt A):97–102. CrossRefPubMedGoogle Scholar
  4. 4.
    Porras D, Nistal E, Martinez-Florez S, Pisonero-Vaquero S, Olcoz JL, Jover R, Gonzalez-Gallego J, Garcia-Mediavilla MV, Sanchez-Campos S (2017) Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 102:188–202. CrossRefPubMedGoogle Scholar
  5. 5.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. CrossRefPubMedGoogle Scholar
  6. 6.
    Landgraf K, Schuster S, Meusel A, Garten A, Riemer T, Schleinitz D, Kiess W, Korner A (2017) Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol 17(1):4. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10(3):644–654. CrossRefPubMedGoogle Scholar
  8. 8.
    Wong S, Stephens WZ, Burns AR, Stagaman K, David LA, Bohannan BJ, Guillemin K, Rawls JF (2015) Ontogenetic differences in dietary fat influence microbiota assembly in the zebrafish gut. MBio 6(5):e00687–e00615. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rurangwa E, Sipkema D, Kals J, Ter Veld M, Forlenza M, Bacanu GM, Smidt H, Palstra AP (2015) Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio. Front Physiol 6:133. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J, Shia A, Scott J, Marchesi JR, Lamb JR, Bugeon L, Dallman MJ (2014) Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun 5:5864. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Devkota S (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice. Nature 487:104–108CrossRefGoogle Scholar
  12. 12.
    Hea W (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415CrossRefGoogle Scholar
  13. 13.
    Rainone V, Schneider L, Saulle I, Ricci C, Biasin M, Al-Daghri NM, Giani E, Zuccotti GV, Clerici M, Trabattoni D (2016) Upregulation of inflammasome activity and increased gut permeability are associated with obesity in children and adolescents. Int J Obes 40(6):1026–1033. CrossRefGoogle Scholar
  14. 14.
    Shang Q, Song G, Zhang M, Shi J, Xu C, Hao J, Li G, Yu G (2017) Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods 28:138–146. CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Ringø E, Olsen RE, Song SK (2017) Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquac Nutr 24:644–665. CrossRefGoogle Scholar
  16. 16.
    Nagai M, Obata Y, Takahashi D, Hase K (2016) Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol 37:79–86. CrossRefPubMedGoogle Scholar
  17. 17.
    Pekkala S, Munukka E, Kong L, Pollanen E, Autio R, Roos C, Wiklund P, Fischer-Posovszky P, Wabitsch M, Alen M, Huovinen P, Cheng S (2015) Toll-like receptor 5 in obesity: the role of gut microbiota and adipose tissue inflammation. Obesity (Silver Spring) 23(3):581–590. CrossRefGoogle Scholar
  18. 18.
    Thaiss CA, Levy M, Suez J, Elinav E (2014) The interplay between the innate immune system and the microbiota. Curr Opin Immunol 26:41–48. CrossRefPubMedGoogle Scholar
  19. 19.
    Duewell P (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361CrossRefGoogle Scholar
  20. 20.
    Ray I, Mahata SK, De RK (2016) Obesity: an immunometabolic perspective. Front Endocrinol 7:157. CrossRefGoogle Scholar
  21. 21.
    Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Galindo-Villegas J, Garcia-Moreno D, de Oliveira S, Meseguer J, Mulero V (2012) Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci U S A 109(39):E2605–E2614. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fawley J, Koehler S, Cabrera S, Lam V, Fredrich K, Hessner M, Salzman N, Gourlay D (2017) IAP deficiency leads to dysbiosis and bacterial translocation in the newborn intestine. J Surg Res 218:35–42. CrossRefPubMedGoogle Scholar
  25. 25.
    Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MB, Traver D (2010) Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci U S A 107:15850–15855CrossRefGoogle Scholar
  26. 26.
    Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH (2011) Study of host-microbe interactions in zebrafish. Methods Cell Biol 105:87–116. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6(5):1080–1088. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Justin D, Clifton PV, Veena VV, Rajapriya R, Pandian TJ (2016) Preliminary investigations on gut microbes for developing gnotobiotic zebrafish. Int J Adv Sci Eng 2(3):138–140Google Scholar
  29. 29.
    Brand M, Granato M, N-V C (2002) Keeping and raising zebrafish. Oxford University Press, New YorkGoogle Scholar
  30. 30.
    Pham LN, Kanther M, Semova I, Rawls JF (2008) Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc 3(12):1862–1875. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Meguro S, Hasumura T, Hase T (2015) Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract. PLoS One 10(3):e0120142. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio)4th edn. Univ. of Oregon Press, EugeneGoogle Scholar
  33. 33.
    Rendueles O, Ferrieres L, Fretaud M, Begaud E, Herbomel P, Levraud JP, Ghigo JM (2012) A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog 8(7):e1002815. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. CrossRefPubMedGoogle Scholar
  35. 35.
    Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898CrossRefGoogle Scholar
  38. 38.
    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310CrossRefGoogle Scholar
  39. 39.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  40. 40.
    Marin-Manzano MC, Abecia L, Hernandez-Hernandez O, Sanz ML, Montilla A, Olano A, Rubio LA, Moreno FJ, Clemente A (2013) Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of Bifidobacterium animalis in the large intestine of growing rats. J Agric Food Chem 61(31):7560–7567. CrossRefPubMedGoogle Scholar
  41. 41.
    Fleige SWV, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601–1613CrossRefGoogle Scholar
  42. 42.
    Oyarbide U, Iturria I, Rainieri S, Pardo MA (2015) Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity. Zebrafish 12(1):71–80. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Livak KJST (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408CrossRefGoogle Scholar
  44. 44.
    Chen YH, Lu YF, Ko TY, Tsai MY, Lin CY, Lin CC, Hwang SP (2009) Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev Dyn 238(5):1021–1032. CrossRefPubMedGoogle Scholar
  45. 45.
    Ruifrok ACJD (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299PubMedGoogle Scholar
  46. 46.
    Cattaruzza F, Cenac N, Barocelli E, Impicciatore M, Hyun E, Vergnolle N, Sternini C (2006) Protective effect of proteinase-activated receptor 2 activation on motility impairment and tissue damage induced by intestinal ischemia/reperfusion in rodents. Am J Pathol 169(1):177–188. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Appleyard CBWJ (1995) Reactivation of hapten-induced colittis and its prevention by antiinflammatory drugs. Am J Phys 269:119–125Google Scholar
  48. 48.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  49. 49.
    Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C (2016) Gut microbiota, obesity and diabetes. Postgrad Med J 92:286–300. CrossRefPubMedGoogle Scholar
  50. 50.
    Tingaud-Sequeira A, Ouadah N, Babin PJ (2011) Zebrafish obesogenic test: a tool for screening molecules that target adiposity. J Lipid Res 52(9):1765–1772. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lam SHCH, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28:9–28CrossRefGoogle Scholar
  52. 52.
    Wallace KN, Akhter S, Smith EM, Lorent K, Pack M (2005) Intestinal growth and differentiation in zebrafish. Mech Dev 122(2):157–173. CrossRefPubMedGoogle Scholar
  53. 53.
    Machado MV, Cortez-Pinto H (2016) Diet, microbiota, obesity, and NAFLD: a dangerous quartet. Int J Mol Sci 17(4):481. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock N (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5:e12191CrossRefGoogle Scholar
  55. 55.
    Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M, Tache Y, Pasricha PJ, Knight R, Farrugia G, Sonnenburg JL (2013) Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144:967–977CrossRefGoogle Scholar
  56. 56.
    He Q (2011) Microbial fingerprinting detects intestinal micrbiota dysbiosis in zf with chemically-induced enterocolitis.pdfGoogle Scholar
  57. 57.
    Stienstra RTC, Kanneganti TD, Joosten LA, Netea MG (2012) The inflammasome puts obesity in the danger zone. Cell Metab 15:10–18CrossRefGoogle Scholar
  58. 58.
    Meijer (2011) Host pathogen interactions made transparent wit the zf modelGoogle Scholar
  59. 59.
    Kanther M, Sun X, Muhlbauer M, Mackey LC, Flynn 3rd EJ, Bagnat M, Jobin C, Rawls JF (2011) Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract. Gastroenterology 141(1):197–207. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nakamoto N, Kanai T (2014) Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 5:221CrossRefGoogle Scholar
  61. 61.
    Curtiss LK, Tobis P (2009) Emerging role of toll-like receptors in atherosclerosis. J Lipid Res 50:S340–S345CrossRefGoogle Scholar
  62. 62.
    Shi H, Kokoeva M, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025CrossRefGoogle Scholar
  63. 63.
    Lee SJ, Bose S, Seo JG, Chung WS, Lim CY, Kim H (2013) The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: a randomized double-blind controlled clinical trial. Clin Nutr 33:973–981. CrossRefPubMedGoogle Scholar
  64. 64.
    Ghanim H, Green K, Abuaysheh S, Patel R, Batra M, Chaudhuri A, Makdissi A, Kuhadiya ND, Dandona P (2017) Ezetimibe and simvastatin combination inhibits and reverses the pro-inflammatory and pro-atherogenic effects of cream in obese patients. Atherosclerosis 263:278–286. CrossRefPubMedGoogle Scholar
  65. 65.
    Sindhu S, Al-Roub A, Koshy M, Thomas R, Ahmad R (2016) Palmitate-induced MMP-9 expression in the human monocytic cells is mediated through the TLR4-MyD88 dependent mechanism. Cel Physiol Biochem 39(3):889–900. CrossRefGoogle Scholar
  66. 66.
    Dasu MR, Jialal I (2010) Free fatty acids in the presence of high glucose amplify monocyte inflammation via toll-like receptors. Am J Physiol Endocrinol Metab 300:E145–E154CrossRefGoogle Scholar
  67. 67.
    Corfield AP (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850(1):236–252. CrossRefPubMedGoogle Scholar
  68. 68.
    García-Valtanen P, Martinez-Lopez A, Ortega-Villaizan M, Perez L, Coll JM, Estepa A (2014) In addition to its antiviral and immunomodulatory properties, the zebrafish b-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antivir Res 101:136–147CrossRefGoogle Scholar
  69. 69.
    Ulloa PE, Solis CJ, De la Paz JF, Alaurent TG, Caruffo M, Hernandez AJ, Dantagnan P, Feijoo CG (2016) Lactoferrin decreases the intestinal inflammation triggered by a soybean meal-based diet in zebrafish. J Immunol Res 2016:1639720–1639710. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yoong S, O'Connell B, Soanes A, Crowhurst MO, Lieschke GJ, Ward AC (2007) Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr Patterns: GEP 7(1–2):39–46. CrossRefPubMedGoogle Scholar
  71. 71.
    Alpers DHZY, Ahnen DJ (1995) Synthesis and parallel secretion of rat intestinal alkaline phosphatase and a surfactant-like particle protein. Am J Physiol Endocrinol Metab 268:1205–1214CrossRefGoogle Scholar
  72. 72.
    Oehlers SH, Flores MV, Hall CJ, Okuda KS, Sison JO, Crosier KE, Crosier PS (2013) Chemically induced intestinal damage models in zebrafish larvae. Zebrafish 10(2):184–193. CrossRefPubMedGoogle Scholar
  73. 73.
    Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC (2015) New developments in goblet cell mucus secretion and function. Mucosal Immunol 8(4):712–719. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Falcinelli S, Rodiles A, Hatef A, Picchietti S, Cossignani L, Merrifield DL, Unniappan S, Carnevali O (2017) Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Sci Rep 7(1):5512. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Du Z, Hudcovic T, Mrazek J, Kozakova H, Srutkova D, Schwarzer M, Tlaskalova-Hogenova H, Kostovcik M, Kverka M (2015) Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog 7:32. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Udayangani RMC, Dananjaya SHS, Nikapitiya C, Heo GJ, Lee J, De Zoysa M (2017) Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish Shellfish Immunol 66:173–184. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Food researchAztiDerioSpain
  2. 2.CIC bioGUNEDerioSpain
  3. 3.Marine researchAztiTxatxarramendiSpain
  4. 4.Departmento de Immunología, Microbiología y Parasitología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
  5. 5.St Luke’s General HospitalKilkennyIreland

Personalised recommendations