Microbial Ecology

, Volume 76, Issue 4, pp 1021–1029 | Cite as

The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae

  • Jiarui Zeng
  • Ting Xu
  • Lidan Cao
  • Chunyi Tong
  • Xuan Zhang
  • Dingyi Luo
  • Shuping Han
  • Pei Pang
  • Weibin Fu
  • Jindong Yan
  • Xuanming Liu
  • Yonghua ZhuEmail author
Plant Microbe Interactions


Rice blast caused by Magnaporthe oryzae severely impacts global rice yield stability. The rice endophyte Streptomyces sporocinereus OsiSh-2, with strong antagonistic activity towards M. oryzae, has been reported in our previous study. To decipher the model of the antagonistic action of OsiSh-2 towards M. oryzae, we compared the iron-capturing abilities of these two strains. The cultivation of OsiSh-2 and a M. oryzae strain under iron-rich and iron-starved conditions showed that M. oryzae depended more on iron supplementation for growth and development than did OsiSh-2. Genomic analysis of the S. sporocinereus and M. oryzae species strains revealed that they might possess different iron acquisition strategies. The actinobacterium OsiSh-2 is likely to favor siderophore utilization compared to the fungus M. oryzae. In addition, protein annotations found that OsiSh-2 contains the highest number of the siderophore biosynthetic gene clusters among the 13 endophytic actinomycete strains and 13 antifungal actinomycete strains that we compared, indicating the prominent siderophore production potential of OsiSh-2. Additionally, we verified that OsiSh-2 could excrete considerably more siderophores than Guy11 under iron-restricted conditions and displayed greater Fe3+-reducing activity during iron-supplemental conditions. Measurements of the iron mobilization between the antagonistic OsiSh-2 and Guy11 showed that the iron concentration is higher around OsiSh-2 than around Guy11. In addition, adding iron near OsiSh-2 could decrease the antagonism of OsiSh-2 towards Guy11. Our study revealed that the antagonistic capacity displayed by OsiSh-2 towards M. oryzae was related to the competition for iron. The highly efficient iron acquisition system of OsiSh-2 may offer valuable insight for the biocontrol of rice blast.


Endophyte Streptomyces sporocinereus OsiSh-2 Magnaporthe oryzae Siderophore Iron competition 


Funding Information

This work is financially supported by the National Natural Science Foundation of China (31672093).

Supplementary material

248_2018_1189_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)


  1. 1.
    Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7(3):185–195CrossRefGoogle Scholar
  2. 2.
    Ebbole DJ (2007) Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45(1):437–456CrossRefGoogle Scholar
  3. 3.
    Miah G, Rafii M, Ismail M, Puteh A, Rahim H, Asfaliza R, Latif M (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40(3):2369–2388CrossRefGoogle Scholar
  4. 4.
    Gnanamanickam SS (2009) Biological control of rice diseases. Springer, Dordrecht, NetherlandsCrossRefGoogle Scholar
  5. 5.
    Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q (2017) Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. J. Sci. Food Agric. 97(4):1149–1157CrossRefGoogle Scholar
  6. 6.
    Araujo R, Kaewkla O, Franco CM (2017) Endophytic actinobacteria: beneficial partners for sustainable agriculture. Endophytes: Biology and BiotechnologyGoogle Scholar
  7. 7.
    Su Z, Mao L, Li N, Feng X, Yuan Z, Wang L, Lin F, Zhang C (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8(4):e61332CrossRefGoogle Scholar
  8. 8.
    Keerthana U, Nagendran K, Raguchander T, Prabakar K, Rajendran L, Karthikeyan G (2017) Deciphering the role of Bacillus subtilis var. amyloliquefaciens in the management of late blight pathogen of potato, Phytophthora infestans. P Natl A Sci India B 2017:1–10Google Scholar
  9. 9.
    Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Techn 57(5):621–629CrossRefGoogle Scholar
  10. 10.
    El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106(1):13–26CrossRefGoogle Scholar
  11. 11.
    Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett. 247(2):147–152CrossRefGoogle Scholar
  12. 12.
    Arias AA, Lambert S, Martinet L, Adam D, Tenconi E, Hayette M-P, Ongena M, Rigali S (2015) Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol. Ecol. 91(7):1–9CrossRefGoogle Scholar
  13. 13.
    Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2(12):946–953CrossRefGoogle Scholar
  14. 14.
    Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46:149–187CrossRefGoogle Scholar
  15. 15.
    Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microb 65(12):5357–5363Google Scholar
  16. 16.
    O'sullivan DJ, O'Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56(4):662–676PubMedPubMedCentralGoogle Scholar
  17. 17.
    Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 86(3):628–644CrossRefGoogle Scholar
  18. 18.
    Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe In 4(1):5–13CrossRefGoogle Scholar
  19. 19.
    Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272(1):401–405CrossRefGoogle Scholar
  20. 20.
    Homuth M, Valentin-Weigand P, Rohde M, Gerlach G-F (1998) Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Infect. Immun. 66(2):710–716PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li J, Chi Z, Li H, Wang X (2008) Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. J Ocean U China 7(1):55–59CrossRefGoogle Scholar
  22. 22.
    Tierrafría VH, Ramos-Aboites HE, Gosset G, Barona-Gómez F (2011) Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3 (2) results in impaired growth in spite of multiple iron-siderophore transport systems. Microb. Biotechnol. 4(2):275–285CrossRefGoogle Scholar
  23. 23.
    Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1):47–56CrossRefGoogle Scholar
  24. 24.
    Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, Liu Q, Zeng J, Gao Y, Xu T (2016) Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9(1):211CrossRefGoogle Scholar
  25. 25.
    Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12(1):444CrossRefGoogle Scholar
  26. 26.
    McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7(1):229CrossRefGoogle Scholar
  27. 27.
    Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43(W1):W237–W243CrossRefGoogle Scholar
  28. 28.
    Grijseels S, Nielsen JC, Randelovic M, Nielsen J, Nielsen KF, Workman M, Frisvad JC (2016) Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Sci. Rep. 6:3511CrossRefGoogle Scholar
  29. 29.
    Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4):314–318CrossRefGoogle Scholar
  30. 30.
    Barnett N (1970) Dipyridyl-induced cell elongation and inhibition of cell wall hydroxyproline biosynthesis. Plant Physiol. 45(2):188–191CrossRefGoogle Scholar
  31. 31.
    DeKock P, Vaughan D (1975) Effects of some chelating and phenolic substances on the growth of excised pea root segments. Planta 126(2):187–195CrossRefGoogle Scholar
  32. 32.
    Schröder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol. Rev. 27(2–3):427–447CrossRefGoogle Scholar
  33. 33.
    Hammacott JE, Williams PH, Cashmore AM (2000) Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146(4):869–876CrossRefGoogle Scholar
  34. 34.
    Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 1(5):265–269CrossRefGoogle Scholar
  35. 35.
    Barona-Gomez F, Lautru S, Francou F, Leblond P, Pernodet J, Challis GL (2006) Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3 (2) and Streptomyces ambofaciens ATCC 23877. Microbiology 152(11):3355–3366CrossRefGoogle Scholar
  36. 36.
    Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6(4):601–611CrossRefGoogle Scholar
  37. 37.
    Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PA, Pieterse CM (2017) Iron and immunity. Annu. Rev. Phytopathol. 55(1):355–375CrossRefGoogle Scholar
  38. 38.
    Mao GD, Thomas P, Lopaschuk G, Poznansky M (1993) Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 268(1):416–420PubMedGoogle Scholar
  39. 39.
    Bruyneel B, Vande Woestyne M, Verstraete W (1989) Lactic acid bacteria: micro-organisms able to grow in the absence of available iron and copper. Biotechnol. Lett. 11(6):401–406CrossRefGoogle Scholar
  40. 40.
    Philpott CC, Leidgens S, Frey AG (2012) Metabolic remodeling in iron-deficient fungi. Biochim. Biophys. Acta 1823(9):1509–1520CrossRefGoogle Scholar
  41. 41.
    Comensoli L, Bindschedler S, Junier P, Joseph E (2017) Chapter two—iron and fungal physiology: a review of biotechnological opportunities. Adv. Appl. Microbiol. 98:31–60CrossRefGoogle Scholar
  42. 42.
    Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18(11):3332–3345CrossRefGoogle Scholar
  43. 43.
    Simeoni LA, Lindsay W, Baker R (1987) Critical iron level associated with biological control of Fusarium wilt. Phytopathology 77(6):1057–1061CrossRefGoogle Scholar
  44. 44.
    Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 72(10):6716–6724CrossRefGoogle Scholar
  45. 45.
    Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3(3):75PubMedPubMedCentralGoogle Scholar
  46. 46.
    Brown JS, Holden DW (2002) Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4(11):1149–1156CrossRefGoogle Scholar
  47. 47.
    Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 25(1):28–36CrossRefGoogle Scholar
  48. 48.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70(3):461–477CrossRefGoogle Scholar
  49. 49.
    Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51(2):215–229CrossRefGoogle Scholar
  50. 50.
    Li C, Zhao M, Tang C, Li S (2010) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb. Ecol. 59(2):344–356CrossRefGoogle Scholar
  51. 51.
    Rachid D, Ahmed B (2005) Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr. J. Biotechnol. 4(7):697–702CrossRefGoogle Scholar
  52. 52.
    Manninen M, Mattila-Sandholm T (1994) Methods for the detection of Pseudomonas siderophores. J Microbiol Meth 19(3):223–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jiarui Zeng
    • 1
  • Ting Xu
    • 1
  • Lidan Cao
    • 1
  • Chunyi Tong
    • 1
  • Xuan Zhang
    • 1
  • Dingyi Luo
    • 1
  • Shuping Han
    • 1
  • Pei Pang
    • 2
  • Weibin Fu
    • 1
  • Jindong Yan
    • 1
  • Xuanming Liu
    • 1
  • Yonghua Zhu
    • 1
    Email author
  1. 1.Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of BiologyHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Information Science and EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations