Microbial Ecology

, Volume 76, Issue 4, pp 911–924 | Cite as

Isolation, Characterization, and Metal Response of Novel, Acid-Tolerant Penicillium spp. from Extremely Metal-Rich Waters at a Mining Site in Transbaikal (Siberia, Russia)

  • Lubov B. Glukhova
  • Yulia A. Frank
  • Ehrzena V. Danilova
  • Marat R. Avakyan
  • David Banks
  • Olli H. Tuovinen
  • Olga V. Karnachuk
Fungal Microbiology


The role of fungi in metal cycling in acidic environments has been little explored to date. In this study, two acid-tolerant and metal-resistant Penicillium isolates, strains ShG4B and ShG4C, were isolated from a mine site in the Transbaikal area of Siberia (Russia). Waters at the mine site were characterized by extremely high metal concentrations: up to 18 g l−1 Fe and > 2 g l−1 each of Cu, Zn, Al, and As. Both isolates were identified as Penicillium spp. by phylogenetic analyses and they grew well in Czapek medium acidified to pH 2.5. Resistance to Cu, Cd, Ni, Co, and arsenate was in the range of 1–10 g l−1. Further experiments with Penicillium strain ShG4C demonstrated that growth in Cu-containing media was accompanied by the precipitation of Cu-oxalate (moolooite) and the formation of extracellular vesicles enriched in Cu on the mycelia. Vesicles were greatly reduced in size in Cd-containing media and were not formed in the presence of Ni or Co. Cd-oxalate was detected as a crystalline solid phase in Cd-exposed mycelia. Hydrated Ni-sulfate (retgersite) and Co-sulfate (bieberite) were detected in mycelia grown in the presence of Ni and Co, respectively. The results demonstrated that acid-tolerant and metal-resistant Penicillium constitute a component in extremophilic microbiomes, contributing to organic matter breakdown and formation of secondary solid phases at pH ranges found in acid rock drainage.


Biomineralization Bieberite Extracellular vesicles Extremophilic fungi Metal resistance Mine water Moolooit Penicillium spp. Retgersite 



We thank Roman Filenko for excellent assistance on the sampling site, Gael Brasseur for help with strain submission to Mycobank, and Olga Ikkert for technical assistance with XRD analysis.

Funding Information

This work was supported by the Russian Fund for Basic Research, Project No. 16-04-01619.

Supplementary material

248_2018_1186_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3703 kb)


  1. 1.
    Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255. CrossRefGoogle Scholar
  3. 3.
    Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ilbert M, Bonnefoy V (2013) Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta 1827:161–175. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation and sulfate reduction in the treatment of acid mine drainage at low temperatures. In: Margesin et al. (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, Heidelberg, pp. 429–454. doi: CrossRefGoogle Scholar
  6. 6.
    Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amaral Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain’s river of fire. Nature 417:137. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aguilera A, Gómez F, Lospitao E, Amils R (2006) A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Syst Appl Microbiol 29:593–605. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aguilera A (2013) Eukaryotic organisms in extreme acidic environments: the Río Tinto case. Life 3:363–374. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zirnstein I, Arnold T, Krawczyk-Bärsch E, Jenk U, Bernhard G, Röske I (2012) Eukaryotic life in biofilms formed in a uranium mine. Microbiol Open 1:83–94. CrossRefGoogle Scholar
  14. 14.
    Hao C, Wang L, Gao Y, Zhang L, Dong H (2010) Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 14:465–474. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mesa V, Gallego JLR, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oggerin M, Tornos F, Rodríguez N, del Moral C, Sánchez-Román M, Amils R (2013) Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ Microbiol 15:2228–2237. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Oggerin M, Tornos F, Rodriguez N, Pascual L, Amils R (2016) Fungal iron biomineralization in Río Tinto. Fortschr Mineral 6:37. CrossRefGoogle Scholar
  18. 18.
    Cánovas D, Durán C, Rodríguez N, Amils R, De Lorenzo V (2003) Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol 5:133–138. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Divers 58:33–45. CrossRefGoogle Scholar
  20. 20.
    Hujslová M, Kubátová A, Kostovčík M, Blanchette RA, de Beer ZW, Chudíčková M, Kolařík M (2014) Three new genera of fungi from extremely acidic soils. Mycol Prog 13:819–831. CrossRefGoogle Scholar
  21. 21.
    Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, Sybren de Hoog G (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86:287–294. CrossRefGoogle Scholar
  22. 22.
    Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri O (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455. CrossRefGoogle Scholar
  24. 24.
    Hujslová M, Kubátová A, Bukovská P, Chudíčková M, Kolařík M (2017) Extremely acidic soils are dominated by species-poor and highly specific fungal communities. Microb Ecol 73:321–337. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, N1 A, Waite TD (2015) Uranium binding mechanisms of the acid-tolerant fungus Coniochaeta fodinicola. Environ Sci Technol 49:8487–8496. CrossRefGoogle Scholar
  26. 26.
    Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occurring metal-bearing minerals, lime scale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154:29–35. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xie J, Strobel G, Xu W-F, Cehn J, Ren H-S, An D-J, Geary B (2017) Fungi as architects of the rimstone dams in HungLong, NSD, Sichuan, China. Microb Ecol 73:29–38. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liang X, Kierans M, Ceci A, Hillier S, Gadd GM (2016) Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18:219–231. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366. CrossRefGoogle Scholar
  32. 32.
    Mosier AC, Miller CS, Frischkorn KR, Ohm RA, Li Z, LaButti K, Lapidus A, Lipzen A, Chen C, Johnson J, Lindquist EA, Pan C, Hettich RL, Grigoriev IV, Singer SW, Banfield JF (2016) Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front Microbiol 7:238. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kokunin MV [Кокунин МВ] (2006) История геологического изучения Шерловогорского месторождения берилла и топаза [History of geological studies of the Sherlovaya Gora beryl and topaz deposit – in Russian]. Website: Цветные камни Трансбайкальского региона. Available at Accessed 15 November 2014
  34. 34.
    Kozlov VD (2009) Rare-earth elements as indicators of ore sources and the degree of differentiation and ore potential of rare metal granite intrusions (eastern Transbaikalia). Russ Geol Geophys 50:29–42. CrossRefGoogle Scholar
  35. 35.
    Klopotow KI & Kantor BZ (2014) Шерловая гора [Sherlovaya Gora – in Russian]. Website: Минералы России Available at http://klopotownarodru/mindata/locathn/Chit_obl/zabaik/sherlov/fersmanhtmAccessed 15 November 2014
  36. 36.
    Banks D, Karnachuk OV, Kadnikov VV, Watts M, Boyce A, Ivasenko DA, Filenko RA, Danilova EV, Pimenov NV, Gundersen P (2015) Hydrochemical data report from sampling of polymetallic mines in Zaibaikalskii Krai, eastern Siberia, Russian Federation. NGU Report 2014.035, Geological Survey of Norway, TrondheimGoogle Scholar
  37. 37.
    Ikkert OP, Gerasimchuk AL, Bukhtiyarova PA, Tuovinen OH, Karnachuk OV (2013) Characterization of precipitates formed by H2S producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste. Antonie Van Leeuwenhoek 103:1221–1234. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Widdel FF, and Bak R (1992) Gram negative mesophilic sulfate reducing bacteria. In: Balows A et al. (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn., Vol. 4. Springer, Berlin, pp. 3352-3378. doi: CrossRefGoogle Scholar
  39. 39.
    Karnachuk OV, Pimenov NV, Yusupov SK, Frank YA, Puhakka YA, Ivanov MV (2006) Distribution, diversity, and activity of sulfate-reducing bacteria in the water column in Gek-Gel lake, Azerbaijan. Microbiology (Russian Federation) 75:82–89. CrossRefGoogle Scholar
  40. 40.
    Ying YX, Ding WL, Li Y (2012) Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng. Biochem Genet 50:848–859. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Behnke A, Bunge J, Barger K, Breiner HB, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Viktor MJ, Rose SH, van Zyl WH, Viljoen-Bloom M (2013) Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases. Biotechnol Biofuels 6:167. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Álvarez SPO, Cadavid DAR, Sierra DME, Orozco CPO, Vahos DFR, Ocampo PZ, Atehortúa L (2014) Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Res Int 2014:169071–169077. CrossRefGoogle Scholar
  47. 47.
    Kadnikov VV, Ivasenko DA, Beletsky AV, Mardanov AV, Danilova EV, Pimenov NV, Karnachuk OV, Ravin NV (2016) Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit. Microbiology (Russian Federation) 85:745–751. CrossRefGoogle Scholar
  48. 48.
    Kadnikov VV, Ivasenko DA, Beletskii AV, Mardanov AV, Danilova EV, Pimenov NV, Karnachuk OV, Ravin NV (2017) A novel uncultured bacterium of the family Gallionellaceae: description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage. Microbiology (Russian Federation) 85:449–461. CrossRefGoogle Scholar
  49. 49.
    Mardanov AV, Glukhova LB, Gruzdev EV, Beletsky AV, Karnachuk OV, Ravin NV (2016) The complete mitochondrial genome of the acid-tolerant fungus Penicillium ShG4C. Genom Data 10:141–143. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Teng Y, Du X, Wang T, Mi C, Yu H, Zou L (2018) Isolation of a fungus Pencicillium sp. with zinc tolerance and its mechanism of resistance. Arch Microbiol 200:159–169. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wei MK, Tang HY, Liang L, Huang S, Li YZ (2006) Characteristics of high resistance to heavy metal salts and uptake of Cu2+ and Zn2+ ions of Penicillium janthinellum. Mycosystema 25:616–623 (in Chinese with English abstract)Google Scholar
  52. 52.
    Feng X, Xu J, Liang Y, Chen G-L, Fan X-W, Li Y-Z (2017) A proteomic-based investigation of potential copper responsive biomarkers: proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. Microbiol Open 6:e485. CrossRefGoogle Scholar
  53. 53.
    Zhang D, Duine J, Kawai F (2002) The extremely high Al resistance of Penicillium janthineleum F-13 is not caused by internal or external sequestration of Al. Biometals 15:167–174. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13:620–630. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukar Cell 6:48–59. CrossRefGoogle Scholar
  56. 56.
    Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L (2014) The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteome 97:177–186. CrossRefGoogle Scholar
  57. 57.
    Wolf JM, Rivera J, Casadevall A (2012) Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles. Cell Microbiol 14:762–773. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Silva BMA, Prados-Rosales R, Espadas-Moreno J, Wolf JM, Luque-Garcia JL, Gonçalves T, Casadevall A (2014) Characterization of Alternaria infectori extracellular vesicles. Med Mycol 52:202–210. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fogarty RV, Tobin JM (1996) Fungal melanins and their interaction with metals. Enzym Microb Technol 19:311–317. CrossRefGoogle Scholar
  60. 60.
    Hamilton AJ, Gómez BL (2002) Melanins in fungal pathogens. J Med Microbiol 51:189–191. CrossRefPubMedGoogle Scholar
  61. 61.
    Gómez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96. CrossRefPubMedGoogle Scholar
  62. 62.
    Fomina M, Gadd GM (2003) Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34. CrossRefGoogle Scholar
  63. 63.
    Dadachova E, Bryan RA, Howell RC, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2008) The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res 21:192–199. CrossRefPubMedGoogle Scholar
  64. 64.
    Khan Z, Rehman A, Hussain SZ (2016) Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere 159:32–43. CrossRefPubMedGoogle Scholar
  65. 65.
    Cordero RJB, Vij R, Casadevall A (2017) Microbial melanins for radioprotection and bioremediation. Microb Biotechnol 10:1186–1190. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pombeiro-Sponchiado SR, Sousa GS, Andrade JCR, Lisboa HF, Gonçalves RCR (2017) Production of melanin pigment by fungi and its biotechnological applications. In: Blumenberg M (ed) Melanin. InTech, London, U.K. CrossRefGoogle Scholar
  67. 67.
    López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. CrossRefGoogle Scholar
  69. 69.
    Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91. CrossRefGoogle Scholar
  70. 70.
    Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611. CrossRefGoogle Scholar
  71. 71.
    Fomina M, Burford EP, Hillier S, Kierans M, Gadd GM (2010) Rock-building fungi. Geomicrobiol J 27:624–629. CrossRefGoogle Scholar
  72. 72.
    Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Clarke LM, Williams IR (1986) Moolooite, a naturally occurring hydrated copper oxalate from Western Australia. Mineral Mag 50:295–298. CrossRefGoogle Scholar
  74. 74.
    Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lubov B. Glukhova
    • 1
  • Yulia A. Frank
    • 1
  • Ehrzena V. Danilova
    • 2
  • Marat R. Avakyan
    • 1
  • David Banks
    • 3
    • 4
  • Olli H. Tuovinen
    • 5
  • Olga V. Karnachuk
    • 1
  1. 1.Laboratory of Biochemistry and Molecular BiologyTomsk State UniversityTomskRussia
  2. 2.Institute of General and Experimental BiologyRussian Academy of SciencesUlan-UdeRussia
  3. 3.School of Engineering, Systems Power & EnergyUniversity of GlasgowGlasgowUK
  4. 4.Holymoor Consultancy Ltd.ChesterfieldUK
  5. 5.Department of MicrobiologyOhio State UniversityColumbusUSA

Personalised recommendations