Advertisement

Microbial Ecology

, Volume 76, Issue 3, pp 695–705 | Cite as

Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic

  • Omar Federico Ordoñez
  • María Cecilia Rasuk
  • Mariana Noelia Soria
  • Manuel Contreras
  • María Eugenia Farías
Environmental Microbiology

Abstract

Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante’s metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.

Keywords

Arsenic Haloarchaea Chemolitotrophic growth Bioenergetic purposes Andean Puna 

Notes

Acknowledgements

This work was supported by the Argentinean National Fund for Science and Technology (FONCyT; project PICT 2013 numbers 0730 and PICT V 2015 numbers 3825). OFO and MEF are researchers from the National Research Council (CONICET) in Argentina. MCR is a recipient of a postdoctoral fellowship from CONICET Argentina, and MNS is a recipient of a doctoral fellowship from FONCyT. We also want to thank Mr. Luis Ahumada for his assistance in field trip and the Environment Secretary of Catamarca province government for their valuable support.

Supplementary material

248_2018_1159_Fig7_ESM.gif (85 kb)
Supplementary Figure S1

Amplification products of putative aioA and arrA genes from isolated strains. A) Amplification of aioA (line 1 to 5) and arrA (line 6 to 10) genes in isolates from Diamante lake. Line 1 and 6: DM1, line 2 and 7: DM2, line 3 and 8: DM3, line 4 and 9: DM4, line 5 and 10: DM5, M: 100 bp molecular marker, line 1 and 12: negative control. B1) Amplification of aioA from Tebenquiche isolates. Line 1: TC1, Line 2: TC3, Line 3: TC5, Line 4: TC7, Line 5: TC8, Line 6: TC9, Line 7: TC11, Line 8: TC16, Line 9: TC28, Line 10: negative control, M: 100 bp molecular marker. B2) Amplification of arrA from Tebenquiche isolates. Line 1: TC1, Line 2: TC3, Line 3: TC8, M: 100 bp molecular marker Line 4: negative control, Line 5: TC9, Line 6: TC11, Line 7: TC28 (GIF 85 kb)

248_2018_1159_MOESM1_ESM.tif (2.3 mb)
High resolution image (TIFF 2322 kb)
248_2018_1159_MOESM2_ESM.docx (15 kb)
Supplementary Table S1 (DOCX 15 kb)

References

  1. 1.
    Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536.  https://doi.org/10.1080/01490450903102525 CrossRefGoogle Scholar
  2. 2.
    Páez-Espino D, Tamames J, De Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130.  https://doi.org/10.1007/s10534-008-9195-y CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667.  https://doi.org/10.1016/j.copbio.2009.09.013 CrossRefPubMedGoogle Scholar
  4. 4.
    Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic(†). Environ Microbiol Rep 4:571–586.  https://doi.org/10.1111/j.1758-2229.2011.00300.x PubMedCrossRefGoogle Scholar
  5. 5.
    Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92.  https://doi.org/10.1016/S0014-5793(02)03186-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347.  https://doi.org/10.1007/s00284-003-4205-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944.  https://doi.org/10.1126/science.1081903 CrossRefPubMedGoogle Scholar
  8. 8.
    Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325CrossRefPubMedGoogle Scholar
  9. 9.
    van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188.  https://doi.org/10.1016/j.bbabio.2012.08.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic. Appl Environ Microbiol 71:599–608.  https://doi.org/10.1128/AEM.71.2.599-608.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49.  https://doi.org/10.1016/j.tim.2004.12.002 CrossRefPubMedGoogle Scholar
  12. 12.
    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130.  https://doi.org/10.1146/annurev.micro.60.080805.142053 CrossRefPubMedGoogle Scholar
  13. 13.
    Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132.  https://doi.org/10.1016/S0969-2126(01)00566-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Lebrun E, Brugna M, Baymann F et al (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693.  https://doi.org/10.1093/molbev/msg071 CrossRefPubMedGoogle Scholar
  15. 15.
    Duval S, Ducluzeau A-L, Nitschke W, Schoepp-Cothenet B (2008) Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol 8:206.  https://doi.org/10.1186/1471-2148-8-206 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Albarracín VH, Kurth D, Ordoñez OF et al (2015) High-up: a remote reservoir of microbial extremophiles in central Andean wetlands. Front Microbiol 6:1404.  https://doi.org/10.3389/fmicb.2015.01404 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dib J, Motok J, Zenoff VF et al (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517.  https://doi.org/10.1007/s00284-008-9103-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Dib JR, Weiss A, Neumann A et al (2009) Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics. Recent Pat Antiinfect Drug Discov 4:66–76.  https://doi.org/10.2174/157489109787236300 CrossRefPubMedGoogle Scholar
  19. 19.
    Ordoñez OF, Flores MR, Dib JR et al (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473.  https://doi.org/10.1007/s00248-009-9527-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Ordoñez OF, Lanzarotti E, Kurth D et al (2015) Genome comparison of two Exiguobacterium strains from high altitude Andean lakes with different arsenic resistance: identification and 3D modeling of the Acr3 efflux pump. Front Environ Sci.  https://doi.org/10.3389/fenvs.2015.00050
  21. 21.
    Escudero L, Chong G, Demergasso C et al (2007) Investigating microbial diversity and UV radiation impact at the high-altitude Lake Aguas Calientes, Chile. Proc SPIE 6694(6694):1–11.  https://doi.org/10.1117/12.736970 CrossRefGoogle Scholar
  22. 22.
    Rascovan N, Maldonado J, Vazquez MP, Eugenia Farías M (2016) Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME J:1–11.  https://doi.org/10.1038/ismej.2015.109
  23. 23.
    Rasuk MC, Fernández AB, Kurth D et al (2015) Bacterial diversity in microbial mats and sediments from the Atacama desert. Microb Ecol 71:44–56.  https://doi.org/10.1007/s00248-015-0649-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Romero L, Alonso H, Campano P et al (2003) Arsenic enrichment in waters and sediments of the Rio Loa (second region, Chile). Appl Geochem 18:1399–1416.  https://doi.org/10.1016/S0883-2927(03)00059-3 CrossRefGoogle Scholar
  25. 25.
    Mantelli F, Scala C, Ronchi A et al (2003) Macrocostituenti ed elementi in traccia nelle acque dei laghi salini delle Andi de Catamarca e la Rioja (Argentina). Boll Chim Ig 54:37–44Google Scholar
  26. 26.
    Farías ME, Rascovan N, Toneatti DM et al (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8:e53497.  https://doi.org/10.1371/journal.pone.0053497 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Farias ME, Revale S, Mancini E et al (2011) Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J Bacteriol 193:3686–3687.  https://doi.org/10.1128/JB.05225-11 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Farías ME, Contreras M, Rasuk MC et al (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329.  https://doi.org/10.1007/s00792-013-0617-6 CrossRefPubMedGoogle Scholar
  29. 29.
    Fernandez AB, Rasuk MC, Visscher PT et al (2016) Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 7:1284.  https://doi.org/10.3389/fmicb.2016.01284 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293.  https://doi.org/10.1016/S0012-8252(03)00037-0 CrossRefGoogle Scholar
  31. 31.
    Demergasso C, Dorador C, Meneses D et al (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J Geophys Res 115:G00D09.  https://doi.org/10.1029/2008JG000836
  32. 32.
    Lara J, Escudero González L, Ferrero M et al (2012) Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in northern Chile. Extremophiles 16:523–538.  https://doi.org/10.1007/s00792-012-0452-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Maldonado J (2015) Biodiversidad de arqueas en ambientes extremos de los andes. Sistemas de resistencia al estrés. Universidad Nacional de TucumánGoogle Scholar
  34. 34.
    Stahl DA, Amann RI (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd., Chichester, pp 205–248Google Scholar
  35. 35.
    Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedPubMedCentralGoogle Scholar
  36. 36.
    Casamayor EO, Calderón-Paz JI, Pedrós-Alió C et al (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119.  https://doi.org/10.1111/j.1574-6941.2000.tb00760.x CrossRefPubMedGoogle Scholar
  37. 37.
    Kauri T, Wallace R, Kushner DJ (1990) Nutrition of the halophilic Archaebacterium, Haloferax volcanii. Syst Appl Microbiol 13:14–18.  https://doi.org/10.1016/S0723-2020(11)80174-8 CrossRefGoogle Scholar
  38. 38.
    Ordoñez OF, Lanzarotti E, Kurth D et al (2013) Draft genome sequence of the polyextremophilic Exiguobacterium sp. strain S17, isolated from hyperarsenic lakes in the Argentinian Puna. Genome Announc 1:e00480–e00413.  https://doi.org/10.1128/genomeA.00480-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Flores MR, Ordoñez OF, Maldonado MJ, Farías ME (2009) Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions. J Gen Appl Microbiol 55:447–458CrossRefPubMedGoogle Scholar
  40. 40.
    Belfiore C, Ordoñez OF, Farías ME (2013) Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17:421–431.  https://doi.org/10.1007/s00792-013-0523-y CrossRefPubMedGoogle Scholar
  41. 41.
    Gorriti MF, Dias GM, Chimetto LA et al (2014) Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 15:473.  https://doi.org/10.1186/1471-2164-15-473 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heinrich-Salmeron A, Cordi A, Brochier-Armanet C et al (2011) Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692.  https://doi.org/10.1128/AEM.02884-10 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Osborne TH, Santini JM (2012) Prokaryotic aerobic oxidation of arsenite. In: Santini JM, Ward SA (eds) Metabolism of Arsenite. CRC Press, London, pp 61–72CrossRefGoogle Scholar
  44. 44.
    Muller D, Médigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53.  https://doi.org/10.1371/journal.pgen.0030053 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Müller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water Air Soil Pollut 183:427–436.  https://doi.org/10.1007/s11270-007-9391-3 CrossRefGoogle Scholar
  46. 46.
    Arsène-Ploetze F, Koechler S, Marchal M et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6:e1000859.  https://doi.org/10.1371/journal.pgen.1000859 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bertin PN, Geist L, Halter D, Koechler S, Marchal M, Arsene-Ploetze F (2012) Microbial arsenic response and metabolism in the genomics era. In: Santini JM, Ward SA (eds) Arsenic in the environment. CRC Press, Boca Raton, pp 99–114Google Scholar
  48. 48.
    Andres J, Arsène-Ploetze F, Barbe V et al (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 5:934–953.  https://doi.org/10.1093/gbe/evt061 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Malasarn D, Saltikov CW, Campbell KM et al (2004) arrA is a reliable marker for As(V) respiration. Science 306:455.  https://doi.org/10.1126/science.1102374 CrossRefPubMedGoogle Scholar
  50. 50.
    Kulp TR, Hoeft SE, Miller LG et al (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: mono and Searles Lakes, California. Appl Environ Microbiol 72:6514–6526.  https://doi.org/10.1128/AEM.01066-06 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Baker-Austin C, Dopson M, Wexler M et al (2007) Extreme arsenic resistance by the acidophilic archaeon “Ferroplasma acidarmanus” Fer1. Extremophiles 11:425–434.  https://doi.org/10.1007/s00792-006-0052-z CrossRefPubMedGoogle Scholar
  52. 52.
    Hallberg KB, Sehlin HM, Lindström EB (1996) Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite. Appl Microbiol Biotechnol 45:212–216.  https://doi.org/10.1007/s002530050672 CrossRefGoogle Scholar
  53. 53.
    Yallop CA, Charalambous BM (1996) Nutrient utilization and transport in the thermoacidophilic archaeon Sulfolobus shibatae. Microbiology 142:3373–3380.  https://doi.org/10.1099/13500872-142-12-3373 CrossRefGoogle Scholar
  54. 54.
    Kurth D, Amadio A, Ordoñez OF et al (2017) Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 7:1024.  https://doi.org/10.1038/s41598-017-00896-0 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sardiwal S, Santini JM, Osborne TH, Djordjevic S (2010) Characterization of a two-component signal transduction system that controls arsenite oxidation in the chemolithoautotroph NT-26. FEMS Microbiol Lett 313:20–28.  https://doi.org/10.1111/j.1574-6968.2010.02121.x CrossRefPubMedGoogle Scholar
  56. 56.
    Philips SE, Taylor ML (1976) Oxidation of arsenite to arsenate by Alcaligenes Faecalis. Appl Environ Microbiol 32:392–399PubMedPubMedCentralGoogle Scholar
  57. 57.
    Turner A (1954) Bacterial oxidation of arsenite I. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust J Biol Sci 7:452.  https://doi.org/10.1071/BI9540452 CrossRefPubMedGoogle Scholar
  58. 58.
    Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol 41:295–305.  https://doi.org/10.1111/j.1365-2672.1976.tb00633.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA)Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICETTucumánArgentina
  2. 2.Centro de Ecología Aplicada (CEA)ÑuñoaChile

Personalised recommendations