Microbial Ecology

, Volume 76, Issue 2, pp 555–564 | Cite as

Ectoparasite Activity During Incubation Increases Microbial Growth on Avian Eggs

  • G. TomásEmail author
  • D. Martín-Gálvez
  • C. Ruiz-Castellano
  • M. Ruiz-Rodríguez
  • J. M. Peralta-Sánchez
  • M. Martín-Vivaldi
  • J. J. Soler
Host Microbe Interactions


While direct detrimental effects of parasites on hosts are relatively well documented, other more subtle but potentially important effects of parasitism are yet unexplored. Biological activity of ectoparasites, apart from skin injuries and blood-feeding, often results in blood remains, or parasite faeces that accumulate and modify the host environment. In this way, ectoparasite activities and remains may increase nutrient availability that may favour colonization and growth of microorganisms including potential pathogens. Here, by the experimental addition of hematophagous flies (Carnus hemapterus, a common ectoparasite of birds) to nests of spotless starlings Sturnus unicolor during incubation, we explore this possible side effect of parasitism which has rarely, if ever, been investigated. Results show that faeces and blood remains from parasitic flies on spotless starling eggshells at the end of incubation were more abundant in experimental than in control nests. Moreover, eggshell bacterial loads of different groups of cultivable bacteria including potential pathogens, as well as species richness of bacteria in terms of Operational Taxonomic Units (OTUs), were also higher in experimental nests. Finally, we also found evidence of a link between eggshell bacterial loads and increased embryo mortality, which provides indirect support for a bacterial-mediated negative effect of ectoparasitism on host offspring. Trans-shell bacterial infection might be one of the main causes of embryo death and, consequently, this hitherto unnoticed indirect effect of ectoparasitism might be widespread in nature and could affect our understanding of ecology and evolution of host-parasite interactions.


ARISA Bacterial community Ectoparasite-host interactions Hatching success Niche construction Trans-shell transmission 



We thank Estefanía López for lab work, and Tomás Pérez-Contreras and Emilio Pagani-Núñez for facilitating collection of some of the flies used in manipulations. We also thank Ángela Martínez-García for help with management of ARISA data and Natalia Juárez and Deseada Parejo for the pictures of owls and roller clutches, respectively. We appreciate the comments provided by Dr. Adèle Mennerat and five anonymous referees on earlier versions of the manuscript. Financial support was provided by Spanish Ministerio de Economía y Competitividad and FEDER (CGL2013-48193-C3-1-P, CGL2013-48193-C3-2-P), by JAE programme to DMG and MRR, and by Juan de la Cierva and Ramón y Cajal programmes to GT. All procedures were conducted under licence from the Environmental Department of the Regional Government of Andalucía, Spain (reference SGYB/FOA/AFR). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Clayton DH, Moore J (1997) Host-parasite evolution: general principles and avian models. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. The University of Chicago Press, ChicagoGoogle Scholar
  3. 3.
    Loye JE, Zuk M (1991) Bird-parasite interactions. Ecology, evolution and behaviour. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Poulin R, Morand S, Skorping A (2000) Evolutionary biology of host-parasite relationships: theory meets reality. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 10:131–165CrossRefGoogle Scholar
  6. 6.
    Degen AA (2006) Effect of macroparasites on the energy budget of small mammals. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer-Verlag, Tokyo, pp 371–399CrossRefGoogle Scholar
  7. 7.
    Møller AP, Allander K, Dufva R (1990) Fitness effects of parasites on passerine birds: a review. In: Blondel J, Gosler A, Lebreton J, McCleery RH (eds) Population biology of passerine birds. Springer-Verlag, Berlin, pp 269–280CrossRefGoogle Scholar
  8. 8.
    Patterson JEH, Neuhaus P, Kutz SJ, Ruckstuhl KE (2013) Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS One 8:e55779CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca RatónGoogle Scholar
  10. 10.
    Gilbert L, Jones LD, Laurenson MK, Gould EA, Reid HW, Hudson PJ (2004) Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proc R Soc Lond B 271:S202–S205CrossRefGoogle Scholar
  11. 11.
    Naugle DE, Aldridge CL, Walker BL, Cornish TE, Moynahan BJ, Holloran MJ, Brown K, Johnson GD, Schmidtmann ET, Mayer RT, Kato CY, Matchett MR, Christiansen TJ, Cook WE, Creekmore T, Falise RD, Rinkes ET, Boyce MS (2004) West Nile virus: pending crisis for greater sage-grouse. Ecol Lett 7:704–713CrossRefGoogle Scholar
  12. 12.
    Lobato E, Pearce-Duvet J, Staszewski V, Gómez-Díaz E, González-Solís J, Kitaysky A, McCoy KD, Boulinier T (2011) Seabirds and the circulation of Lyme borreliosis bacteria in the North Pacific. Vector Borne Zoo Dis 11:1521–1527CrossRefGoogle Scholar
  13. 13.
    Staszewski V, McCoy KD, Boulinier T (2008) Variable exposure and immunological response to Lyme disease Borrelia among North Atlantic seabird species. Proc R Soc Lond B 275:2101–2109CrossRefGoogle Scholar
  14. 14.
    López-Rull I, Macías-Garcia C (2015) Control of invertebrate occupants of nests. In: Deeming DC, Reynolds SJ (eds) Nests, eggs, and incubation: new ideas about avian reproduction. Oxford University Press, Oxford, pp 82–96CrossRefGoogle Scholar
  15. 15.
    Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661CrossRefPubMedGoogle Scholar
  16. 16.
    Salyers AA, Whitt DD (2002) Bacterial pathogenesis. A molecular approach, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  17. 17.
    Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904CrossRefPubMedGoogle Scholar
  18. 18.
    Hahn MA, Dheilly NM (2016) Experimental models to study the role of microbes in host-parasite interactions. Front Microbiol 7:1300CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moreno J, Briones V, Merino S, Ballesteros C, Sanz JJ, Tomás G (2003) Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk 120:784–790Google Scholar
  20. 20.
    Potti J, Moreno J, Yorio P, Briones V, García-Borboroglu P, Villar S, Ballesteros C (2002) Bacteria divert resources from growth for magellanic penguin chicks. Ecol Lett 5:709–714CrossRefGoogle Scholar
  21. 21.
    Møller AP, Peralta-Sánchez JM, Nielsen JT, López-Hernández E, Soler JJ (2012) Goshawk prey have more bacteria than non-prey. J Anim Ecol 81:403–410CrossRefPubMedGoogle Scholar
  22. 22.
    Soler JJ, Peralta-Sánchez JM, Martín-Platero AM, Martín-Vivaldi M, Martínez-Bueno M, Møller AP (2012) The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. J Evol Biol 25:1779–1791CrossRefPubMedGoogle Scholar
  23. 23.
    Ruiz-Rodríguez M, Tomás G, Martín-Gálvez D, Ruiz-Castellano C, Soler JJ (2015) Bacteria and the evolution of honest signals. The case of ornamental throat feathers in spotless starlings. Funct Ecol 29:701–709CrossRefGoogle Scholar
  24. 24.
    Ruiz-Rodríguez M, Valdivia E, Soler JJ, Martín-Vivaldi M, Martín-Platero AM, Martínez-Bueno M (2009) Symbiotic bacteria living in the hoopoe's uropygial gland prevent feather degradation. J Exp Biol 212:3621–3626Google Scholar
  25. 25.
    Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am Nat 169:S112–S117CrossRefPubMedGoogle Scholar
  26. 26.
    Peralta-Sánchez JM, Møller AP, Martín-Platero AM, Soler JJ (2010) Number and colour composition of nest lining feathers predict eggshell bacterial community in barn swallow nests: an experimental study. Funct Ecol 24:426–433CrossRefGoogle Scholar
  27. 27.
    Ruiz-Castellano C, Tomás G, Ruiz-Rodríguez M, Martín-Gálvez D, Soler JJ (2016) Nest material shapes eggs bacterial environment. PLoS One 11:e0148894CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cook MI, Beissinger SR, Toranzos GA, Arendt WJ (2005) Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol Lett 8:532–537CrossRefPubMedGoogle Scholar
  29. 29.
    Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B 270:2233–2240CrossRefGoogle Scholar
  30. 30.
    Soler JJ, Peralta-Sánchez JM, Martín-Vivaldi M, Martín-Platero AM, Flensted-Jensen E, Møller AP (2012) Cognitive skills and bacterial load: comparative evidence of costs of cognitive proficiency in birds. Naturwissenschaften 99:111–122CrossRefPubMedGoogle Scholar
  31. 31.
    Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436CrossRefGoogle Scholar
  32. 32.
    Benskin CMWH, Wilson K, Jones K, Hartley IR (2009) Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev 84:349–373CrossRefPubMedGoogle Scholar
  33. 33.
    Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Animal behavior and the microbiome. Science 338:198–199CrossRefPubMedGoogle Scholar
  34. 34.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Soler JJ, Navarro C, Pérez-Contreras T, Avilés JM, Cuervo JJ (2008) Sexually selected egg coloration in spotless starlings. Am Nat 171:183–194CrossRefPubMedGoogle Scholar
  36. 36.
    Avilés JM, Pérez-Contreras T, Navarro C, Soler JJ (2009) Male spotless starlings adjust feeding effort based on egg spots revealing ectoparasite load. Anim Behav 78:993–999CrossRefGoogle Scholar
  37. 37.
    López-Rull I, Gil M, Gil D (2007) Spots in starling Sturnus unicolor eggs are good indicators of ectoparasite load by Carnus hemapterus (Diptera: Carnidae). Ardeola 54:131–134Google Scholar
  38. 38.
    Tomás G, Martín-Gálvez D, Ruiz-Rodríguez M, Soler JJ (2017) Intraspecific avian brood parasites avoid host nests infested by ectoparasites. J Ornithol 158:561–567CrossRefGoogle Scholar
  39. 39.
    Brake I (2011) World catalog of the family Carnidae (Diptera, Schizophora). Myia 12:113–169 (updated in; Accessed 6 June 2013)Google Scholar
  40. 40.
    Calero-Torralbo MA (2011) Factores ecológicos y mecanismos implicados en la variabilidad de la interacción entre un ectoparásito generalista (Carnus hemapterus) y sus hospedadores. PhD dissertation, University of Granada, Granada, SpainGoogle Scholar
  41. 41.
    Grimaldi D (1997) The bird flies, genus Carnus: species revision, generic relationships, and a fossil Meoneura in amber (Diptera: Carnidae). American Museum of Natural History, New YorkGoogle Scholar
  42. 42.
    Mercier L (1928) Contribution à l’étude de la perte de la faculté du vol chez Carnus hemapterus Nitzsch, Diptère à ailes caduques. C R Hebd Seances Acad Sci 186:529–531Google Scholar
  43. 43.
    Narushin VG (2005) Egg geometry calculation using the measurements of length and breadth. Poult Sci 84:482–484CrossRefPubMedGoogle Scholar
  44. 44.
    Bruce J, Drysdale EM (1994) Trans-shell transmission. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Chapman & Hall, London, pp 63–91CrossRefGoogle Scholar
  45. 45.
    Byappanahalli NM, Nevers MB, Korajkic A, Staley ZR, Harwood VJ (2012) Enterococci in the environment. Microbiol Mol Biol Rev 76:685–706CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  47. 47.
    Soler JJ, Peralta-Sánchez JM, Martínez-Bueno M, Martín-Vivaldi M, Martín-Gálvez D, Vela AI, Briones V, Pérez-Contreras T (2011) Brood parasitism is associated with increased bacterial contamination of host eggs: bacterial loads of host and parasitic eggs. Biol J Linn Soc 103:836–848CrossRefGoogle Scholar
  48. 48.
    Wang JM, Firestone MK, Beissinger SR (2011) Microbial and environmental effects on avian egg viability: do tropical mechanisms act in a temperate environment? Ecology 92:1137–1145CrossRefPubMedGoogle Scholar
  49. 49.
    Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636PubMedPubMedCentralGoogle Scholar
  50. 50.
    Martínez-García A, Soler JJ, Rodríguez-Ruano SM, Martínez-Bueno M, Martín-Platero AM, Juárez-García N, Martín-Vivaldi M (2015) Preening as a vehicle for key bacteria in hoopoes. Microb Ecol 70:1024–1033CrossRefPubMedGoogle Scholar
  51. 51.
    Soler JJ, Martínez-García A, Rodríguez-Ruano SM, Martínez-Bueno M, Martín-Platero AM, Peralta-Sánchez JM, Martín-Vivaldi M (2016) Nestedness of hoopoes' bacterial communities: symbionts from the uropygial gland to the eggshell. Biol J Linn Soc 118:763–773CrossRefGoogle Scholar
  52. 52.
    Martín-Platero AM, Peralta-Sánchez JM, Soler JJ, Martínez-Bueno M (2010) Chelex-based DNA isolation procedure for the identification of microbial communities of eggshell surfaces. Anal Biochem 397:253–255CrossRefPubMedGoogle Scholar
  53. 53.
    Danovaro R, Luna GM, Dell’Anno A, Pietrangeli B (2006) Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol 72:5982–5989CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia A, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695CrossRefPubMedGoogle Scholar
  57. 57.
    Loisel P, Harmand J, Zemb O, Latrille E, Lobry C, Delgenès JP, Godon JJ (2006) Denaturing gradient electrophoresis (DGE) and single-strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environ Microbiol 8:720–731CrossRefPubMedGoogle Scholar
  58. 58.
    Møller AP, Flensted-Jensen E, Mardal W, Soler JJ (2013) Host-parasite relationship between colonial terns and bacteria is modified by a mutualism with a plant with antibacterial defenses. Oecologia 173:169–178CrossRefPubMedGoogle Scholar
  59. 59.
    Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  60. 60.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Collyer ML, Sekora DJ, Adams DC (2015) A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115:357–365CrossRefPubMedGoogle Scholar
  63. 63.
    Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc B-Method 53:285–339Google Scholar
  64. 64.
    Adams DC, Collyer ML (2007) Analysis of character divergence along environmental gradients and other covariates. Evolution 61:510–515CrossRefPubMedGoogle Scholar
  65. 65.
    Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:1143–1154CrossRefPubMedGoogle Scholar
  66. 66.
    Collyer ML, Adams DC (2007) Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–692CrossRefPubMedGoogle Scholar
  67. 67.
    Collyer ML, Adams DC (2013) Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix-Ital J Mammal 24:75–83Google Scholar
  68. 68.
    Clark L (1991) The nest protection hypothesis: the adaptive use of plant secondary compounds by European starlings. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution and behaviour. Oxford University Press, Oxford, pp 205–221Google Scholar
  69. 69.
    Mennerat A, Mirleau P, Blondel J, Perret P, Lambrechts MM, Heeb P (2009) Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia 161:849–855CrossRefPubMedGoogle Scholar
  70. 70.
    Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2005) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav Ecol 16:30–36CrossRefGoogle Scholar
  71. 71.
    Heeb P, Kölliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity and ectoparasite community structure. Ecology 81:958–968Google Scholar
  72. 72.
    Dawson RD, Hillen KK, Whitworth TL (2005) Effects of experimental variation in temperature on larval densities of parasitic Protocalliphora (Diptera: Calliphoridae) in nests of tree swallows (Passeriformes: Hirundinidae). Environ Entomol 34:563–568CrossRefGoogle Scholar
  73. 73.
    McNeil DAC, Clark F (1987) Markings on the eggs of house martins Delichon urbica. Bird Study 34:26–27CrossRefGoogle Scholar
  74. 74.
    Krinsky WL (2002) True bugs (Hemiptera). In: Mullen G, Durden L (eds) Medical and veterinary entomology. Academic Press, San Diego, pp 67–86CrossRefGoogle Scholar
  75. 75.
    Feare CJ, Constantine DAT (1980) Starling eggs with spots. Bird Study 27:119–120Google Scholar
  76. 76.
    Hornsby MAW, Fairn ER, Barber CA (2013) Male European starlings do not use egg spots as a cue to adjust investment in nestlings. Wilson J Ornithol 125:109–115CrossRefGoogle Scholar
  77. 77.
    Jackson JA (1970) Spotted eggs in a local population of starlings. Bird Band 41:308–310Google Scholar
  78. 78.
    Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM, Ruiz-Rodríguez M (2010) Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol J 3:93–100CrossRefGoogle Scholar
  79. 79.
    Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain
  2. 2.European Molecular Biology Laboratory, European Bioinformatics InstituteWellcome Genome CampusCambridgeUK
  3. 3.Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations