Microbial Ecology

, Volume 76, Issue 2, pp 340–351 | Cite as

Microbial Communities of High-Elevation Fumaroles, Penitentes, and Dry Tephra “Soils” of the Puna de Atacama Volcanic Zone

  • Adam J. Solon
  • Lara Vimercati
  • J. L. Darcy
  • Pablo Arán
  • Dorota Porazinska
  • C. Dorador
  • M. E. Farías
  • S. K. Schmidt
Environmental Microbiology


The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.


Water availability Nieves penitentes Naganishia Snow algae Astrobiology Altiplano 



We thank CONAF (Corporación Nacional Forestal) for the permission to collect the samples in Llullaillaco National Park in Chile; E. Gendron, R. Lynch, and A.J. King for the assistance in the lab; and P. Sowell, C. Vitry, P. Maciel, G. Zimmerman, T. Bowen, G. Jesperson, and T. Harris for the help in the field. Funding was provided by the National Science Foundation (DEB-1258160), a grant from the United States Air Force Office of Scientific Research (FA9550-14-1-0006), and the National Geographic Society Committee for Research and Exploration.

Supplementary material

248_2017_1129_MOESM1_ESM.pdf (72 kb)
Fig. S1 PCoA plot of beta diversity depicting clustering of 16S microbial communities in the penitentes fields and dry soils from Socompa. The plot is a visualization of a weighted UniFrac distance matrix. Fumarole 6049 m = orange, Fumarole 5825 m = purple, Penitentes 5825 m = blue, Dry 5825 m = red, and Dry 6050 m = green. The orange oval surrounds all samples from both fumarole sites (PDF 72 kb)
248_2017_1129_MOESM2_ESM.pdf (135 kb)
Fig. S2 PCoA plot of beta diversity depicting clustering of microbial communities in the penitentes fields and dry soils from Socompa and Llullaillaco. The plot is a visualization of a weighted UniFrac distance matrix. Socompa dry = orange; Llullaillaco dry = red; Llullaillaco penitentes = blue; Socompa penitentes = green. The orange oval surrounds all samples from Socompa regardless of habitat type. The blue parallelogram surrounds all samples from Llullaillaco regardless of habitat type (PDF 135 kb)
248_2017_1129_MOESM3_ESM.pdf (133 kb)
Table S1 Table depicting the biogeochemical data for the three habitat types at 5825 m.a.s.l. on Socompa (PDF 132 kb)
248_2017_1129_MOESM4_ESM.csv (126 kb)
Table S2 Spreadsheet of 18S OTU table in .csv format. Abundances range from 0 to 1 (CSV 125 kb)
248_2017_1129_MOESM5_ESM.csv (132 kb)
Table S3 Spreadsheet of 16S OTU table in .csv format. Abundances range from 0 to 1 (CSV 132 kb)


  1. 1.
    Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res 24:857–863CrossRefGoogle Scholar
  2. 2.
    Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR (2003) Indigenous and contaminant microbes in ultradeep mines. Environ. Microbiol. 5:1168–1191CrossRefPubMedGoogle Scholar
  3. 3.
    Smith DJ, Griffin DW, Schuerger AC (2010) Stratospheric microbiology at 20 km over the Pacific Ocean. Aerobiologia 26:35–46CrossRefGoogle Scholar
  4. 4.
    Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J. Geophys. Res. 115:G00D09CrossRefGoogle Scholar
  5. 5.
    Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. P Roy Soc Lond B 278:702–708CrossRefGoogle Scholar
  6. 6.
    Siebert J, Hirsch P (1988) Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol. 9:37–44CrossRefPubMedGoogle Scholar
  7. 7.
    Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98:289–297PubMedPubMedCentralGoogle Scholar
  8. 8.
    McKay CP (2014) Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. U. S. A. 111:12628–12633CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ. Microbiol. 9:414–424CrossRefPubMedGoogle Scholar
  10. 10.
    Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitpatrick SK, Takacs-Vesbach CD (2011) Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microb. Ecol. 61:543–556CrossRefPubMedGoogle Scholar
  11. 11.
    Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI, Seely M, Cowan DA (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337CrossRefPubMedGoogle Scholar
  12. 12.
    Kennedy A (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct. Alp. Res. 25:308–315CrossRefGoogle Scholar
  13. 13.
    Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138CrossRefPubMedGoogle Scholar
  14. 14.
    Tiao G, Lee CK, McDonald IR, Cowan DA, Cary SC (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nat. Commun. 3:660CrossRefPubMedGoogle Scholar
  15. 15.
    McKay CP, Friedmann EI, Gómez-Silva B, Cáceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3:393–406CrossRefPubMedGoogle Scholar
  16. 16.
    Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52:389–398CrossRefPubMedGoogle Scholar
  17. 17.
    Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566CrossRefPubMedGoogle Scholar
  18. 18.
    Cockell CS, McKay CP, Warren-Rhodes K, Horneck G (2008) Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts—dosimetric experiments in the hyperarid core of the Atacama Desert. J. Photochem. Photobiol. B 90:79–87CrossRefPubMedGoogle Scholar
  19. 19.
    Azua-Bustos A, Urrejola C, Vicuña R (2012) Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett. 586:2939–2945CrossRefPubMedGoogle Scholar
  20. 20.
    Davila AF, Gómez-Silva B, de Los RA, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. Biogeosci. 113:G01028CrossRefGoogle Scholar
  21. 21.
    Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldán M, Gómez-Silva B (2015) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17:299–315CrossRefPubMedGoogle Scholar
  22. 22.
    Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 25:139–174CrossRefGoogle Scholar
  23. 23.
    Messerli B, Grosjean M, Vuille M (1997) Water availability, protected areas, and natural resources in the Andean desert altiplano. Mt. Res. Dev. 17:229–238CrossRefGoogle Scholar
  24. 24.
    Whitman D, Isacks BL, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau: seismic Q, magmatism, flexure, topography and tectonics. Tectonophysics 259:29–40CrossRefGoogle Scholar
  25. 25.
    Messerli B, Grosjean M, Bonani G, Bürgi A, Geyh MA, Graf K, Ramseyer K, Romero H, Schotterer U, Schreier H, Vuille M (1993) Climate change and natural resource dynamics of the Atacama Altiplano during the last 18,000 years: a preliminary synthesis. Mt. Res. Dev.:117–127Google Scholar
  26. 26.
    Cabrol NA, Grin EA, Chong G, Minkley E, Hock AN, Yu Y, Bebout L, Fleming E, Häder DP, Demergasso C, Gibson J (2009) The High-Lakes Project. J. Geophys. Res. Biogeosci. 114:G00D06CrossRefGoogle Scholar
  27. 27.
    Tremblin P, Schneider N, Minier V, Durand GA, Urban J (2012) Worldwide site comparison for submillimetre astronomy. Astron. Astrophys. 548:A65CrossRefGoogle Scholar
  28. 28.
    Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl. Environ. Microbiol. 75:735–747CrossRefPubMedGoogle Scholar
  29. 29.
    Lynch R, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (> 6000 masl) mineral soils of the Atacama region. J. Geophys. Res. Biogeosci. 117:G02028Google Scholar
  30. 30.
    Smith MD, Wolff MJ, Clancy RT, Murchie SL (2009) Compact reconnaissance imaging spectrometer observations of water vapor and carbon monoxide. J Geophys Res Planets 114(E2)Google Scholar
  31. 31.
    Sindoni G, Formisano V, Geminale A (2011) Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planet Space Sci 59:149–162CrossRefGoogle Scholar
  32. 32.
    Halloy SRP (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arctic Alpine Res 23:247–262CrossRefGoogle Scholar
  33. 33.
    Vimercati L, Hamsher S, Schubert Z, Schmidt SK (2016) Growth of a high-elevation Cryptococcus sp. during extreme freeze-thaw cycles. Extremophiles 20:579–588CrossRefPubMedGoogle Scholar
  34. 34.
    Lliboitry L (1954) The origin of penitentes. J. Glaciol. 2:331–338CrossRefGoogle Scholar
  35. 35.
    Matthes FE (1934) Ablation of snow-fields at high altitudes by radiant solar heat. Trans. Am. Geophys. Union 15:380–385CrossRefGoogle Scholar
  36. 36.
    Schweizer G (1969) Büsserschnee in Vorderasien (‘Büsserschnee’ (‘penitentes’) Phenonmena in the near East). Erdkunde 23:200–205CrossRefGoogle Scholar
  37. 37.
    Kotlyakov VM, Lebedeva IM (1974) Nieve and ice penitents. Their way of formation and indicative significance. Zeitschrift fur Gletscherkunde und Glazialgeologie 10:111–127Google Scholar
  38. 38.
    Corripio JG, Purves RS (2005) Surface energy balance of high altitude glaciers in the central Andes: the effect of snow penitentes. In: De Jong C, Collins DN, Ranzi R (eds) Climate and hydrology in mountain areas. Wiley, Hoboken, pp 15–27Google Scholar
  39. 39.
    Swan LW (1992) The aeolian biome. Bioscience 42:262–270CrossRefGoogle Scholar
  40. 40.
    Francis PW, Gardeweg M, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603CrossRefGoogle Scholar
  41. 41.
    Kelfoun K, Druitt T, de Vries BVW, Guilbaud MN (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull. Volcanol. 70:1169–1187CrossRefGoogle Scholar
  42. 42.
    Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J. Volcanol. Geotherm. Res. 105:77–105CrossRefGoogle Scholar
  43. 43.
    De Vries BVW, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J. Volcanol. Geotherm. Res. 105:225–247CrossRefGoogle Scholar
  44. 44.
    King AJ, Meyer AF, Schmidt SK (2008) High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biol. Biochem. 40:2605–2610CrossRefGoogle Scholar
  45. 45.
    Betterton MD (2001) Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones. Phys. Rev. E 63:056129CrossRefGoogle Scholar
  46. 46.
    Claudin P, Jarry H, Vignoles G, Plapp M, Andreotti B (2015) Physical processes causing the formation of penitentes. Phys. Rev. E 92:033015CrossRefGoogle Scholar
  47. 47.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  49. 49.
    Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596CrossRefPubMedGoogle Scholar
  51. 51.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215:403–410CrossRefPubMedGoogle Scholar
  52. 52.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2:1CrossRefGoogle Scholar
  55. 55.
    King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, Schmidt SK (2010) Biogeography and habitat modeling of high-alpine bacteria. Nat. Commun. 1:53CrossRefPubMedGoogle Scholar
  56. 56.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ, Oksanen MJ (2013) Package ‘vegan’. Community ecology package, version 2Google Scholar
  57. 57.
    Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Nemergut DR (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shen JP, Chen CR, Lewis T (2016) Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci. Rep. 6:19639CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jiménez-Bueno NG, Valenzuela-Encinas C, Marsch R, Ortiz-Gutiérrez D, Verhulst N, Govaerts B, Dendooven L, Navarro-Nova YE (2016) Bacterial indicator taxa in soils under different long-term agricultural management. J. Appl. Microbiol. 120:921–933CrossRefPubMedGoogle Scholar
  60. 60.
    Ligi T, Oopkaup K, Truu M, Preem JK, Nõlvak H, Mitsch WJ, Mander Ü, Truu J (2014) Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol. Eng. 72:56–66CrossRefGoogle Scholar
  61. 61.
    Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS One 8:e66103CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kim M, Cho A, Lim HS, Hong SG, Kim JH, Lee J, Choi T, Ahn TS, Kim OS (2015) Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica. PLoS One 10:e0119966CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with< 5% soil moisture. Soil Biol. Biochem. 38:3107–3119CrossRefGoogle Scholar
  64. 64.
    Warren-Rhodes KA, McKay CP, Boyle LN, Wing MR, Kiekebusch EM, Cowan DA, Stomeo F, Pointing SB, Kaseke KF, Eckardt F, Henschel JR (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J. Geophys. Res. Biogeosci. 118:1451–1460CrossRefGoogle Scholar
  65. 65.
    Pulschen AA, Rodrigues F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D (2015) UV-resistant yeasts isolated from a high-altitude volcanic area in the Atacama Desert as eukaryotic models for astrobiology. Microbiology Open 4:574–588CrossRefPubMedGoogle Scholar
  66. 66.
    Lynch R, Darcy JL, Kane NC, Nemergut DR, Schmidt SK (2014) Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front. Microbiol. 5:698CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ragatz L, Jiang Z-Y, Bauer CE, Gest H (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum. Arch. Microbiol. 162:1–6CrossRefGoogle Scholar
  68. 68.
    Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron E, Solon A, Porazinska D, Dorador C (2017) A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8:153–163CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N (2016) Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nature Microbiol 2:16198CrossRefGoogle Scholar
  70. 70.
    Costello EK, Schmidt SK (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ. Microbiol. 8:1471–1486CrossRefPubMedGoogle Scholar
  71. 71.
    Hamilton TL, Havig J (2017) Primary productivity of snow algae communities on stratovolcanoes of the Pacific northwest. Geobiology 15:280–295CrossRefPubMedGoogle Scholar
  72. 72.
    Naff C, Darcy JL, Schmidt SK (2013) Phylogeny and biogeography of an uncultured clade of snow Chytrids. Environ. Microbiol. 15:2672–2680PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adam J. Solon
    • 1
  • Lara Vimercati
    • 1
  • J. L. Darcy
    • 1
  • Pablo Arán
    • 2
    • 3
  • Dorota Porazinska
    • 1
  • C. Dorador
    • 2
    • 3
  • M. E. Farías
    • 4
  • S. K. Schmidt
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  2. 2.Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB)Universidad de AntofagastaAntofagastaChile
  3. 3.Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos BiológicosUniversidad de AntofagastaAntofagastaChile
  4. 4.Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, PROIMITucumánArgentina

Personalised recommendations