Microbial Ecology

, Volume 76, Issue 1, pp 226–239 | Cite as

Organic Amendments in a Long-term Field Trial—Consequences for the Bulk Soil Bacterial Community as Revealed by Network Analysis

  • Christoph A. O. Schmid
  • Peter Schröder
  • Martin Armbruster
  • Michael Schloter
Soil Microbiology


This study intended to elucidate the long-term effects of organic soil amendments on bacterial co-occurrence in bulk soil with and without addition of mineral fertiliser. Previous research mostly neglected the bacterial co-occurrence structure and focussed mainly on the parameters species diversity and abundance changes of species. Here we present a systematic comparison of two frequently used soil amendments, manure and straw, with regard to their impact on bacterial co-occurrence in a long-term field trial in Speyer, Germany. The approach involved 16S amplicon sequencing in combination with a bacterial network analysis, comparing the different fertiliser regimes. The results show an increase of bacterial diversity as well as an accumulation of bacteria of the order Bacillales in plots fertilised with manure compared to a control treatment. In the straw-amended plots neither an increase in diversity was found nor were indicative species detectable. Furthermore, network analysis revealed a clear impact of mineral fertiliser addition on bacterial co-occurrence structure. Most importantly, both organic amendments increased network complexity irrespective of mineral fertilisation regime. At the same time, the effects of manure and straw exhibited differences that might be explained by differences in their nutritional/chemical contents. It is concluded that bacterial interactions are a crucial parameter for the assessment of amendment effects regarding soil health and sustainability.


Microbial interactions Organic amendments Manure Straw 16S amplicon sequencing Long-term experiment 



The authors would like to acknowledge the technical support of Susanne Kublik and Gudrun Hufnagl as well as the personnel of the research farm Rinkenbergerhof in Speyer. Special thanks go to Gisle Vestergaard for his help with setting up the bioinformatics. Further we thank Viviane Radl, Stefanie Schulz and three anonymous reviewers for helpful comments on a previous version of the manuscript.

Funding information

This project was funded by the Bundesministerium für Bildung und Forschung, Germany, within the BonaRes program, project INPLAMINT (031A561).

Supplementary material

248_2017_1110_MOESM1_ESM.pdf (905 kb)
ESM 1 (PDF 905 kb)
248_2017_1110_MOESM2_ESM.xlsx (19 kb)
ESM 2 (XLSX 18 kb)


  1. 1.
    Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 110:445–456CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT et al (2005) Global consequences of land use. Science 309:570–574. CrossRefPubMedGoogle Scholar
  3. 3.
    Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA (1997) Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197:61–69. CrossRefGoogle Scholar
  4. 4.
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefPubMedGoogle Scholar
  5. 5.
    Bonilla N, Gutiérrez-Barranquero JA, Ad V, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491. CrossRefGoogle Scholar
  6. 6.
    Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35:453–461. CrossRefGoogle Scholar
  7. 7.
    Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem. 75:54–63. CrossRefGoogle Scholar
  8. 8.
    Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RH, van Veen JA, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol. Ecol. 90:195. CrossRefPubMedGoogle Scholar
  9. 9.
    Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72:169–180. CrossRefGoogle Scholar
  10. 10.
    Manna M, Swarup A, Wanjari R, Mishra B, Shahi D (2007) Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res. 94:397–409. CrossRefGoogle Scholar
  11. 11.
    Sapp M, Harrison M, Hany U, Charlton A, Thwaites R (2015) Comparing the effect of digestate and chemical fertiliser on soil bacteria. Appl. Soil Ecol. 86:1–9. CrossRefGoogle Scholar
  12. 12.
    Sun R, Guo X, Wang D, Chu H (2015a) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95:171–178. CrossRefGoogle Scholar
  13. 13.
    Sun R, Zhang X-X, Guo X, Wang D, Chu H (2015b) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 88:9–18. CrossRefGoogle Scholar
  14. 14.
    Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol. 9:657–666. CrossRefPubMedGoogle Scholar
  15. 15.
    Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM (2008) A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol. Lett. 278:193–199. CrossRefPubMedGoogle Scholar
  16. 16.
    Hölzel C, Harms K, Küchenhoff H, Kunz A, Müller C, Meyer K, Schwaiger K, Bauer J (2010) Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J. Appl. Microbiol. 108:1642–1656. CrossRefPubMedGoogle Scholar
  17. 17.
    Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14:236–243. CrossRefPubMedGoogle Scholar
  18. 18.
    Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30:401–422. CrossRefGoogle Scholar
  19. 19.
    Brar B, Singh K, Dheri G, Balwinder-Kumar (2013) Carbon sequestration and soil carbon pools in a rice–wheat cropping system: effect of long-term use of inorganic fertilizers and organic manure. Soil Tillage Res. 128:30–36. CrossRefGoogle Scholar
  20. 20.
    Zhao J, Ni T, Li J, Lu Q, Fang Z, Huang Q, Zhang R, Li R et al (2016) Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 99:1–12. CrossRefGoogle Scholar
  21. 21.
    Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895. CrossRefGoogle Scholar
  22. 22.
    Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N (2013) Temporal variability in soil microbial communities across land-use types. The ISME Journal 7:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MWI (2001) Compounds, plant and turnover, their and as soil organic matter, stabilization. In: Schulze E-D (ed) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 201–215CrossRefGoogle Scholar
  24. 24.
    Zimmermann W (1990) Degradation of lignin by bacteria. J. Biotechnol. 13:119–130. CrossRefGoogle Scholar
  25. 25.
    Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8:548–557. CrossRefPubMedGoogle Scholar
  26. 26.
    Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521–554. CrossRefPubMedGoogle Scholar
  27. 27.
    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2004) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51:133–142. CrossRefPubMedGoogle Scholar
  28. 28.
    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71:7099–7106. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, Chen J, Yang J et al. (2014) Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep 4:doi:
  30. 30.
    Bischoff R, Emmerling R (1997) Der internationale organische Stickstoffdauerdüngungsversuch (IOSDV) Speyer. Arch. Agron. Soil Sci. 42:57–65. CrossRefGoogle Scholar
  31. 31.
    Armbruster M, Picone S, Bischoff R, Wiesler F (2012) Einfluss unterschiedlicher Bodenbearbeitungsintensität und organischer Düngung auf Erträge und Bodenparameter—dargestellt am Beispiel des IOSDV-Versuchs der LUFA Speyer. VDLUFA-Schriftenreihe 68:287–298Google Scholar
  32. 32.
    Bassler R (1991) Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (Methodenbuch). Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, DarmstadtGoogle Scholar
  33. 33.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. CrossRefPubMedGoogle Scholar
  34. 34.
    Lindgreen S (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Research Notes 5:337. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schmieder R, Edwards R (2011) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 6:1–11. CrossRefGoogle Scholar
  36. 36.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7:335–336CrossRefGoogle Scholar
  37. 37.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 21 Nov 2017
  40. 40.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  42. 42.
    Kruschke JK (2015) Doing Bayesian data analysis2nd edn. Academic Press, BostonGoogle Scholar
  43. 43.
    Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, AustriaGoogle Scholar
  44. 44.
    Stan Development Team (2015) RStan: the R interface to Stan. R package version 2.10.0Google Scholar
  45. 45.
    Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD et al (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB et al (2017) Vegan: community ecology package. Accessed 21 Nov 2017
  47. 47.
    Shafiei M, Dunn KA, Boon E, MacDonald SM, Walsh DA, Gu H, Bielawski JP (2015) BioMiCo: a supervised Bayesian model for inference of microbial community structure. Microbiome 3:1–15. CrossRefGoogle Scholar
  48. 48.
    Weng FC-H, Shaw GT-W, Weng C-Y, Yang Y-J, Wang D (2017) Inferring microbial interactions in the Gut of the Hong Kong Whipping Frog (Polypedates megacephalus) and a validation using probiotics. Front Microbiol 8:doi:
  49. 49.
    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media, San Jose, CA, USAGoogle Scholar
  50. 50.
    Körschens M, Albert E, Armbruster M, Barkusky D, Baumecker M, Behle-Schalk L, Bischoff R, Čergan Z et al (2013) Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 59:1017–1040. CrossRefGoogle Scholar
  51. 51.
    McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:1–12. CrossRefGoogle Scholar
  52. 52.
    Weiss SJ, Xu Z, Amir A, Peddada S, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR et al. (2015) Effects of library size variance, sparsity, and compositionality on the analysis of microbiome dataGoogle Scholar
  53. 53.
    Wu M, Qin H, Chen Z, Wu J, Wei W (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol. Fertil. Soils 47:397–405. CrossRefGoogle Scholar
  54. 54.
    Coolon JD, Jones KL, Todd TC, Blair JM, Herman MA (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS One 8:1–11. CrossRefGoogle Scholar
  55. 55.
    Aparna K, Pasha M, Rao D, Krishnaraj P (2014) Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecol. Eng. 71:268–277. CrossRefGoogle Scholar
  56. 56.
    Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas. PLoS One 9:e99949. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pershina E, Valkonen J, Kurki P, Ivanova E, Chirak E, Korvigo I, Provorov N, Andronov E (2015) Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One 10:e0145072. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Guanghua W, Junjie L, Xiaoning Q, Jian J, Yang W, Xiaobing L (2008) Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods. Acta Ecol. Sin. 28:220–226. CrossRefGoogle Scholar
  59. 59.
    Chaudhary DR, Gautam RK, Ghosh A, Chikara J, Jha B (2015) Effect of nitrogen management on soil microbial community and enzymatic activities in jatropha curcas l. plantation. CLEAN – Soil Air Water 43:1058–1065. CrossRefGoogle Scholar
  60. 60.
    Liu W, Wang Q, Wang B, Wang X, Franks AE, Teng Y, Li Z, Luo Y (2015) Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant Soil 395:415–427. CrossRefGoogle Scholar
  61. 61.
    Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenström J, Hallin S (2007) Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol. Biochem. 39:106–115. CrossRefGoogle Scholar
  62. 62.
    Li F, Chen L, Zhang J, Yin J, Huang S (2017) Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8:187PubMedPubMedCentralGoogle Scholar
  63. 63.
    Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39:2971–2976. CrossRefGoogle Scholar
  64. 64.
    Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194CrossRefPubMedGoogle Scholar
  65. 65.
    Li J, Cooper JM, Lin Z, Li Y, Yang X, Zhao B (2015) Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Appl. Soil Ecol. 96:75–87. CrossRefGoogle Scholar
  66. 66.
    Armbruster M, Bischoff R, Wiesler F (2009) Nährstoff- und Humuswirkung organischer Dünger—dargestellt am Beispiel des IOSDV-Versuchs der LUFA Speyer. VDLUFA-Schriftenreihe 65:423–432Google Scholar
  67. 67.
    Zhu S, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 107:324–333. CrossRefGoogle Scholar
  68. 68.
    Shepherd ML, Swecker WS, Jensen RV, Ponder MA (2012) Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol. Lett. 326:62–68. CrossRefPubMedGoogle Scholar
  69. 69.
    Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE (2012) Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res. 8:231. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Soriano M, Diaz P, Pastor FJ (2005) Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr. Microbiol. 50:114–118. CrossRefPubMedGoogle Scholar
  71. 71.
    Sakurai M, Suzuki K, Onodera M, Shinano T, Osaki M (2007) Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39:2777–2784. CrossRefGoogle Scholar
  72. 72.
    Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl. Biochem. Biotechnol. 163:869–881. CrossRefPubMedGoogle Scholar
  73. 73.
    Ouattara HG, Reverchon S, Niamke SL, Nasser W (2011) Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation. Food Microbiol. 28:1–8. CrossRefPubMedGoogle Scholar
  74. 74.
    Soares FL, Melo IS, Dias ACF, Andreote FD (2012) Cellulolytic bacteria from soils in harsh environments. World J. Microbiol. Biotechnol. 28:2195–2203. CrossRefPubMedGoogle Scholar
  75. 75.
    Siala A, Hill IR, Gray TRG (1974) Populations of spore-forming bacteria in an acid forest soil, with special reference to Bacillus subtilis. Microbiology 81:183–190Google Scholar
  76. 76.
    Vilain S, Luo Y, Hildreth MB, Brözel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 72:4970–4977CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yergeau E, Bell TH, Champagne J, Maynard C, Tardif S, Tremblay J, Greer CW (2015) Transplanting soil microbiomes leads to lasting effects on willow growth, but not on the rhizosphere microbiome. Front. Microbiol. 6:1436. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Barberán A, Bates ST, Casamayor EO, Fierer N (2011) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal 6:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74:566–574. CrossRefPubMedGoogle Scholar
  80. 80.
    Pereira e Silva, MC, Dias ACF, van Elsas JD, Salles JF (2012) Spatial and temporal variation of archaeal, bacterial and in agricultural soils, fungal communities. PLoS One 7:doi:
  81. 81.
    García-Orenes F, Morugán-Coronado A, Zornoza R, Scow K (2013) Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS One 8:doi:
  82. 82.
    Zhen Z, Liu H, Wang N, Guo L, Meng J, Ding N, Wu G, Jiang G (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One 9:e108555. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7: doi:
  84. 84.
    Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97:188–198. CrossRefGoogle Scholar
  85. 85.
    Ling N, Zhu C, Xue C, Chen H, Duan Y, Peng C, Guo S, Shen Q (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99:137–149. CrossRefGoogle Scholar
  86. 86.
    Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers. Conserv. 23:1639–1658. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Albuquerque L, França L, Rainey FA, Schumann P, Nobre MF, da Costa MS (2011) Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst. Appl. Microbiol. 34:595–599. CrossRefPubMedGoogle Scholar
  88. 88.
    Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int. J. Syst. Evol. Microbiol. 31:285–293Google Scholar
  89. 89.
    Kämpfer P, Young C-C, Sridhar KR, Arun AB, Lai WA, Shen FT, Rekha PD (2006) Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int. J. Syst. Evol. Microbiol. 56:2223–2228CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Christoph A. O. Schmid
    • 1
  • Peter Schröder
    • 1
  • Martin Armbruster
    • 2
  • Michael Schloter
    • 1
  1. 1.Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome AnalysisNeuherbergGermany
  2. 2.LUFA SpeyerSpeyerGermany

Personalised recommendations