Advertisement

Microbial Ecology

, Volume 75, Issue 4, pp 1024–1034 | Cite as

Brown Rot Syndrome and Changes in the Bacterial Сommunity of the Baikal Sponge Lubomirskia baicalensis

  • Nina V. KulakovaEmail author
  • Maria V. Sakirko
  • Renat V. Adelshin
  • Igor V. Khanaev
  • Ivan A. Nebesnykh
  • Thierry Pérez
Invertebrate Microbiology

Abstract

Mass mortality events have led to a collapse of the sponge fauna of Lake Baikal. We describe a new Brown Rot Syndrome affecting the endemic species Lubomirskia baicalensis. The main symptoms are the appearance of brown patches at the sponge surface, necrosis, and cyanobacterial fouling. 16S rRNA gene sequencing was used to characterize the bacterial community of healthy versus diseased sponges, in order to identify putative pathogens. The relative abundance of 89 eubacterial OTUs out of 340 detected has significantly changed between healthy and diseased groups. This can be explained by the depletion of host-specific prokaryotes and by the appearance and proliferation of disease-specific OTUs. In diseased sponges, the most represented OTUs belong to the families Oscillatoriaceae, Cytophagaceae, Flavobacteriaceae, Chitinophagaceae, Sphingobacteriaceae, Burkholderiaceae, Rhodobacteraceae, Comamonadaceae, Oxalobacteraceae, and Xanthomonadaceae. Although these families may contain pathogenic agents, the primary causes of changes in the sponge bacterial community and their relationship with Brown Rot Syndrome remain unclear. A better understanding of this ecological crisis will thus require a more integrative approach.

Keywords

Disease outbreak Mass mortality Porifera Brown Rot Syndrome Opportunistic pathogens Freshwater 

Notes

Acknowledgments

We thank Sergey Feranchuk for bioinformatics analysis, Olga Maikova for the morphological identification, the diver Yuriy Yushchik for sampling, Natalya Bel’kova for sharing amplification primers, Maxim Khasnatinov for assistance with statistical analyses, Lubov Kravtsova and Tatyana Butina for the valuable discussion, Rachel Mackie for the English reviewing, and finally Sergey Belikov and Alexander Ereskovsky for their support.

Funding Information

Funding came from the Russian State Projects (0345-2016-0002, 0345-2016-0008), the Russian Foundation for Basic Research Project (16-54-150007), and the French Centre National de la Recherche Scientifique (CNRS, PRC 216483).

Supplementary material

248_2017_1097_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 56 kb)
248_2017_1097_MOESM2_ESM.txt (55 kb)
ESM 2 (TXT 55 kb)
248_2017_1097_MOESM3_ESM.doc (194 kb)
ESM 3 (DOC 193 kb)

References

  1. 1.
    Wilkinson C (1987) Interocean differences in size and nutrition of coral reef sponge populations. Science 236:1654–1657.  https://doi.org/10.1126/science.236.4809.1654 CrossRefPubMedGoogle Scholar
  2. 2.
    Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci. 69(2):535–546Google Scholar
  3. 3.
    Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177CrossRefPubMedGoogle Scholar
  4. 4.
    Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9(6):1363–1375.  https://doi.org/10.1111/j.1462-2920.2007.01303.x CrossRefPubMedGoogle Scholar
  5. 5.
    Webster NS, Thomas T (2016) The sponge hologenome. MBio 7(2):e00135-16.  https://doi.org/10.1128/mBio.00135-16 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30(3):301–314CrossRefGoogle Scholar
  7. 7.
    Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, et al. (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6(3):564–576.  https://doi.org/10.1038/ismej.2011.116 CrossRefPubMedGoogle Scholar
  8. 8.
    Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8(6):1198–1209.  https://doi.org/10.1038/ismej.2013.227 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rodríguez-Marconi S, De la Iglesia R, Díez B, Fonseca CA, Hajdu E, Trefault N (2015) Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One 10(9):e0138837.  https://doi.org/10.1371/journal.pone.0138837 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Webster NS, Luter HM, Soo RM, Botté ES, Simister RL, Abdo D, Whalan S (2013) Same, same but different: symbiotic bacterial associations in GBR sponges. Front Microbiol 3:444.  https://doi.org/10.3389/fmicb.2012.00444 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gernert C, Glöckner FO, Krohne G, Hentschel U (2005) Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol 50(2):206–212.  https://doi.org/10.1007/s00248-004-0172-x CrossRefPubMedGoogle Scholar
  12. 12.
    Costa R, Keller-Costa T, Gomes NC, da Rocha UN, van Overbeek L, van Elsas JD (2013) Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microb Ecol 65(1):232–244.  https://doi.org/10.1007/s00248-012-0102-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Gladkikh AS, Kaluyzhnaya OV, Belykh OI, Ahn TS, Parfenova VV (2014) Analysis of bacterial communities of two Lake Baikal endemic sponge species. Mikrobiologiia 83(6):682–693PubMedGoogle Scholar
  14. 14.
    Seo EY, Jung D, Belykh OI, Bukshuk NA, Parfenova VV, Joung Y, Kim IC, Yim JH, Ahn T-S (2016) Comparison of bacterial diversity and species composition in three endemic Baikalian sponges. Ann Limnol 52:27–32.  https://doi.org/10.1051/limn/2015035 CrossRefGoogle Scholar
  15. 15.
    Gaino E, Pronzato R, Corriero G, Buffa P (1992) Mortality of commercial sponges: incidence in two Mediterranean areas. Boll Zool 59:79–85.  https://doi.org/10.1080/11250009209386652 CrossRefGoogle Scholar
  16. 16.
    Vacelet J, Vacelet E, Gaino E, Gallissian MF (1994) Bacterial attack of spongin skeleton during the 1986−1990 Mediterranean sponge disease. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp. 355–362Google Scholar
  17. 17.
    Perez T, Garrabou J, Sartoretto S, Harmelin J-G, Francour P, Vacelet J (2000) Mortalité massive d’invertébrés marins : un événement sans précédent en Méditerranée nord-occidentale. C.R. Acad. Sci. Paris, Sciences de la vie. Life Sci 323:853–865.  https://doi.org/10.1016/S0764-4469(00)01237-3 Google Scholar
  18. 18.
    Olson JB, Gochfeld DJ, Slattery M (2006) Aplysina red band syndrome: a new threat to Caribbean sponges. Dis Aquat Org 71(2):163–168.  https://doi.org/10.3354/dao071163 CrossRefPubMedGoogle Scholar
  19. 19.
    Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10(12):3366–3376.  https://doi.org/10.1111/j.1462-2920.2008.01734.x CrossRefPubMedGoogle Scholar
  20. 20.
    Garrabou J, Comaz R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, et al. (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103.  https://doi.org/10.1111/j.1365-2486.2008.01823.x CrossRefGoogle Scholar
  21. 21.
    Luter HM, Whalan S, Webster NS (2010) Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Appl Environ Microbiol 76(17):5736–5744.  https://doi.org/10.1128/AEM.00653-10 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maldonado M, Sánchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defense mechanisms. Mar Biol 157:1577–1590.  https://doi.org/10.1007/s00227-010-1431-7 CrossRefGoogle Scholar
  23. 23.
    Angermeier H, Kamke J, Abdelmohsen UR, Krohne G, Pawlik JR, Lindquist NL, Hentschel U (2011) The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiol Ecol 75(2):218–230.  https://doi.org/10.1111/j.1574-6941.2010.01001.x CrossRefPubMedGoogle Scholar
  24. 24.
    Angermeier H, Glöckner V, Pawlik JR, Lindquist NL, Hentschel U (2012) Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Dis Aquat Org 99(2):95–102.  https://doi.org/10.3354/dao02460 CrossRefPubMedGoogle Scholar
  25. 25.
    Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY (2015) Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 3:e890.  https://doi.org/10.7717/peerj.890 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sweet M, Bulling M, Cerrano C (2015) A novel sponge disease caused by a consortium of micro-organisms. Coral Reefs 34(3):871–883.  https://doi.org/10.1007/s00338-015-1284-0 CrossRefGoogle Scholar
  27. 27.
    Blanquer A, Uriz MJ, Cebrian E, Galand PE (2016) Snapshot of a bacterial microbiome shift during the early symptoms of a massive sponge die-off in the Western Mediterranean. Front Microbiol 7:752.  https://doi.org/10.3389/fmicb.2016.00752 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pérez T, Vacelet J (2014) Effect of climatic and anthropogenic disturbances on sponge fisheries. In: Goffredo S, Dubinsky Z (eds) The Mediterranea Sea: its history and present challenges. Springer, Dordrecht, pp. 577–587CrossRefGoogle Scholar
  29. 29.
    Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, et al. (1999) Emerging marine diseases-climate links and anthropogenic factors. Science 285:1505–1510CrossRefPubMedGoogle Scholar
  30. 30.
    Wulff JL (2006) Sponge systematics by starfish: predators distinguish cryptic sympatric species of Caribbean fire sponges, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biol Bull 211:83–94.  https://doi.org/10.2307/4134581 CrossRefPubMedGoogle Scholar
  31. 31.
    Cerrano C, Bavestrello G (2009) Massive mortalities and extinctions. In: Wahl M (ed) Marine hard bottom communities. Springer-Verlag, Berlin, pp. 295–307CrossRefGoogle Scholar
  32. 32.
    Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25(4):250–260.  https://doi.org/10.1016/j.tree.2009.10.009 CrossRefPubMedGoogle Scholar
  33. 33.
    Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One 6(6):e20211.  https://doi.org/10.1371/journal.pone.0020211 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, Gaino E (2012) Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. Microb Ecol 64(3):802–813.  https://doi.org/10.1007/s00248-012-0068-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Carballo JL, Bautista E, Nava H, Cruz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3(4):872–886.  https://doi.org/10.1002/ece3.452 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sokolow S (2009) Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis Aquat Org 87(1–2):5–18.  https://doi.org/10.3354/dao02099 CrossRefPubMedGoogle Scholar
  37. 37.
    Fan L, Liu M, Simister R, Webster NS, Thomas T (2013) Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J 7(5):991–1002.  https://doi.org/10.1038/ismej.2012.165 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Webster NS, Negri AP, Webb RI, Hill R (2002) A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309.  https://doi.org/10.3354/meps232305 CrossRefGoogle Scholar
  39. 39.
    Cervino JM, Winiarski-Cervino K, Polson SW, Goreau T, Smith GW (2006) Identification of bacteria associated with a disease affecting the marine sponge Ianthella basta in New Britain, Papua New Guinea. Mar Ecol Prog Ser 324:139–150.  https://doi.org/10.3354/meps324139 CrossRefGoogle Scholar
  40. 40.
    Galstoff PS, Brown HH, Smith CL, Smith FGW (1939) Sponge mortality in the Bahamas. Nature 143:807–808CrossRefGoogle Scholar
  41. 41.
    Galstoff PS (1942) Wasting disease causing mortality of sponges in the West Indies and Gulf of Mexico. Proc. 8th Amer Sci Cong 3:411–412Google Scholar
  42. 42.
    Vacelet J, Gallissian MF (1978) Virus-like particles in cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissue changes. J Invertebr Pathol 31:246–254CrossRefGoogle Scholar
  43. 43.
    Smith FGW (1939) Sponge mortality at British Honduras. Nature 144:785CrossRefGoogle Scholar
  44. 44.
    Sparks AK (1985) Synopsis of invertebrate pathology: exclusive of insects. Elsevier, New YorkGoogle Scholar
  45. 45.
    Rützler K (1988) Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Dis Aquat Org 5:143–149CrossRefGoogle Scholar
  46. 46.
    Di Camillo CG, Bartolucci I, Cerrano C, Bavestrello G (2013) Sponge disease in the Adriatic Sea. Mar. Ecol. 34:62–71.  https://doi.org/10.1111/j.1439-0485.2012.00525.x CrossRefGoogle Scholar
  47. 47.
    Sweet M, Burn D, Croquer A, Leary P (2013) Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral Stephanocoenia intersepta. PLoS One 8(4):e62580.  https://doi.org/10.1371/journal.pone.0062580 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Choudhury JD, Pramanik A, Webster NS, Llewellyn LE, Gachhui R, Mukherjee J (2015) The pathogen of the Great Barrier Reef sponge Rhopaloeides odorabile is a new strain of Pseudoalteromonas agarivorans containing abundant and diverse virulence-related genes. J Mar Biotechnol (NY) 17(4):463–478.  https://doi.org/10.1007/s10126-015-9627-y CrossRefGoogle Scholar
  49. 49.
    Efremova SM (2001) Porifera. In: Timoshkin OA (ed) An annotated list of the fauna of Lake Baikal and its catchment area. Nauka, Novosibirsk, V1, pp 177–90Google Scholar
  50. 50.
    Kozhov MM (1972) Essays on Lake Baikal studies. IrkutskGoogle Scholar
  51. 51.
    Masuda Y (2009) Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Prog Mol Subcell Biol 47:81–110.  https://doi.org/10.1007/978-3-540-88552-8_4 CrossRefPubMedGoogle Scholar
  52. 52.
    Bormotov AE (2011) What has happened with Baikal sponges? Sci First Hand 5(41):20–23Google Scholar
  53. 53.
    Timoshkin OA, Malnik VV, Sakirko MV, Boedeker C (2014) Ecological crisis at Lake Baikal: scientists diagnose. Sci First Hand 5:75–91Google Scholar
  54. 54.
    Kaluzhnaya OV, Itskovich VB (2015) Bleaching of Baikalian sponge affects the taxonomic composition of symbiotic microorganisms. Genetika 51(11):1335–1340PubMedGoogle Scholar
  55. 55.
    Timoshkin OA, Samsonov DP, Yamamuro M, Moore MV, Belykh OI, Malnik VV, Sakirko MV, Shirokaya AA, Bondarenko NA, Domysheva MV, et al. (2016) Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world's greatest freshwater biodiversity in danger? J. Great Lakes Res. 42(3):487–497.  https://doi.org/10.1016/j.jglr.2016.02.011 CrossRefGoogle Scholar
  56. 56.
    Rezvoi PD (1936) Freshwater sponges of the USSR. In: Rezvoi PD (ed) The fauna of the USSR. Academy of Sciences, Moskow V. 2, pp 21–41Google Scholar
  57. 57.
    Mikhailov IS, Zakharova YR, Galachyants YP, Usoltseva MV, Petrova DP, Sakirko MV, Likhoshway YV, Grachev MA (2015) Similarity of structure of taxonomic bacterial communities in the photic layer of Lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Dokl Biochem Biophys 465:413–419.  https://doi.org/10.1134/S1607672915060198 CrossRefPubMedGoogle Scholar
  58. 58.
    Semenov AD (1977) Guidance on the chemical analysis of surface waters. Gidrometeoizdat, LeningradGoogle Scholar
  59. 59.
    Stroganov NS, Buzinova NS (1980) Practical guide in hydrochemistry. MGU, MoscowGoogle Scholar
  60. 60.
    Wetzel RG, Likens GE (1991) Limnological analyses. Springer-Verlag, New YorkCrossRefGoogle Scholar
  61. 61.
    Shimaraev MN, Domysheva VM (2013) Trends in hydrological and hydrochemical processes in Lake Baikal under conditions of modern climate change. In: Goldman CR, Kumagai M, Robarts RD (ed) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. Wiley-Blackwell, pp 43–66Google Scholar
  62. 62.
    Domysheva VM (2009) Hydrochemistry. In: Tulokhonov AK (ed) Baikal: nature and people. Ecos, Ulan-Ude, pp. 68–70Google Scholar
  63. 63.
    Sakirko MV, Domysheva VM, Pestunov DA, Netsvetaeva OG, Panchenko MV (2015) Concentration of nutrients in the water of Southern Baikal in summer. Proc of SPIE 9680(968045):1–7.  https://doi.org/10.1117/12.2205753 Google Scholar
  64. 64.
    Khodzher T, Domysheva VM, Sorokovikova LM et al. (2016) Methods for monitoring the chemical composition of Lake Baikal water. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer International Publishing Switzerland, pp 113–29Google Scholar
  65. 65.
    Newton RJ, Bootsma MJ, Morrison HG (2013) A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol 65(4):1011–1023.  https://doi.org/10.1007/s00248-013-0200-9 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3):494–504.  https://doi.org/10.1101/gr.112730.110 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41(D1):D590–D596CrossRefPubMedGoogle Scholar
  69. 69.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/Aem.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    He Y, Caporaso JG, Jiang XT, Sheng HF, Huse SM, Rideout JR, Edgar RC, Kopylova E, Walters WA, Knight R, Zhou HW (2015) Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity. Microbiome 3:20.  https://doi.org/10.1186/s40168-015-0081-x CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kravtsova LS, Izhboldina LA, Khanaev IV, Pomazkina GV, Domysheva VM, Kravchenko OS, Grachev MA (2012) Disturbances of the vertical zoning of green algae in the coastal part of the Listvennichnyi gulf of Lake Baikal. Dokl Akad Nauk 447:227–229Google Scholar
  72. 72.
    Kravtsova LS, Izhboldina LA, Khanaev IV, Pomazkina GV, Rodionova EV, Domysheva VM, Sakirko MV, Tomberg IV (2014) Nearshore benthic blooms of filamentous green algae in Lake Baikal. J Great Lakes Res 40:441–448CrossRefGoogle Scholar
  73. 73.
    Gaikwad S, Shouche YS, Gade WN (2016) Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity. AMB Expr 6:40.  https://doi.org/10.1186/s13568-016-0211-2 CrossRefGoogle Scholar
  74. 74.
    Vicente VP (1989) Regional commercial sponge extinction in the West Indies: are recent climatic changes responsible? Mar Ecol Prog Ser 10:179–191.  https://doi.org/10.1111/j.1439-0485.1989.tb00073.x CrossRefGoogle Scholar
  75. 75.
    Roder C, Arif C, Daniels C (2014) Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 23(4):965–974.  https://doi.org/10.1111/mec.12638 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Miller AW, Richardson LL (2011) A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiol Ecol 75(2):231–241.  https://doi.org/10.1111/j.1574-6941.2010.00991.x CrossRefPubMedGoogle Scholar
  77. 77.
    Olson JB, Thacker RW, Gochfeld DJ (2014) Molecular community profiling reveals impacts of time, space, and disease status on the bacterial community associated with the Caribbean sponge Aplysina cauliformis. FEMS Microbiol Ecol 87(1):268–279.  https://doi.org/10.1111/1574-6941.12222 CrossRefPubMedGoogle Scholar
  78. 78.
    Denikina NN, Dzyuba EV, Bel’kova NL, Belikov SI (2016) The first case of disease of the sponge Lubomirskia Baicalensis: investigation of its microbiome. Biol Bull 3:315–322.  https://doi.org/10.7868/S0002332916030024 Google Scholar
  79. 79.
    Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF (2013) Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. MBio 4(5):e00708-13.  https://doi.org/10.1128/mBio.00708-13 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dennis PG, Seymour J, Kumbun K, Tyson GW (2013) Diverse populations of lake water bacteria exhibit chemotaxis towards inorganic nutrients. ISME J 7(8):1661–1664.  https://doi.org/10.1038/ismej.2013.47 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100.  https://doi.org/10.1111/j.1574-6941.2002.tb00910.x PubMedGoogle Scholar
  82. 82.
    Newton RJ, McLellan SL (2015) A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 6:1028.  https://doi.org/10.3389/fmicb.2015.01028 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Liang Q, Zhang X, Lee KH, Wang Y, Yu K, Shen W, Fu L, Shu M, Li W (2015) Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4. World J Microbiol Biotechnol 31(11):1711–1718.  https://doi.org/10.1007/s11274-015-1921-3 CrossRefPubMedGoogle Scholar
  84. 84.
    Cárdenas A, Rodriguez-R LM, Pizarro V, Cadavid LF, Arévalo-Ferro C (2012) Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J 6(3):502–512.  https://doi.org/10.1038/ismej.2011.123 CrossRefPubMedGoogle Scholar
  85. 85.
    Hansen GH, Bergh O, Michaelsen J, Knappskog D (1992) Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 42(3):451–458.  https://doi.org/10.1099/00207713-42-3-451 CrossRefPubMedGoogle Scholar
  86. 86.
    Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A (2013) Columnaris disease in fish: a review with emphasis on bacterium-host interaction. Vet Res 44(1):27.  https://doi.org/10.1186/1297-9716-44-27 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Willems A (2014) The family Comamonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria, 4th edn. Springer, Berlin, pp. 777–851CrossRefGoogle Scholar
  88. 88.
    Verner-Jeffreys DW, Pond MJ, Peeler EJ, Rimmer GS, Oidtmann B, Way K, Mewett J, Jeffrey K, Bateman K, Reese RA, Feist SW (2008) Emergence of cold water strawberry disease of rainbow trout Oncorynchus mykiss in England and Wales: outbreak investigations and transmission studies. Dis Aquat Org 79(3):207–218.  https://doi.org/10.3354/dao01916 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nina V. Kulakova
    • 1
    Email author
  • Maria V. Sakirko
    • 1
  • Renat V. Adelshin
    • 2
  • Igor V. Khanaev
    • 1
  • Ivan A. Nebesnykh
    • 1
  • Thierry Pérez
    • 3
  1. 1.Limnological Institute, Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk Antiplague Research Institute of Siberia and Far EastIrkutskRussia
  3. 3.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix Marseille Univ, IRD, Avignon Univ, Station Marine d’EndoumeMarseilleFrance

Personalised recommendations