Skip to main content
Log in

Microbiota Diversity Within and Between the Tissues of Two Wild Interbreeding Species

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Understanding the role of microbiota as reproductive barriers or sources of adaptive novelty in the fundamental biological phenomenon of speciation is an exciting new challenge necessitating exploration of microbiota variation in wild interbreeding species. We focused on two interbreeding cyprinid species, Chondrostoma nasus and Parachondrostoma toxostoma, which have geographic distributions characterized by a mosaic of hybrid zones. We described microbiota diversity and composition in the three main teleost mucosal tissues, the skin, gills and gut, in the parental parapatric populations. We found that tissue type was the principal determinant of bacterial community composition. In particular, there was strong microbiota differentiation between external and internal tissues, with secondary discrimination between the two species. These findings suggest that specific environmental and genetic filters associated with each species have shaped the bacterial communities, potentially reflecting deterministic assemblages of bacteria. We defined the core microbiota common to both Chondrostoma species for each tissue, highlighting the occurrence of microbe-host genome interactions at this critical level for studies of the functional consequences of hybridization. Further investigations will explore to what extend these specific tissue-associated microbiota signatures could be profoundly altered in hybrids, with functional consequences for post-mating reproductive isolation in relation to environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238. https://doi.org/10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  3. Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol. 31:539–549. https://doi.org/10.1016/j.tree.2016.03.006

    Article  PubMed  Google Scholar 

  4. Hird SM (2017) Evolutionary biology needs wild microbiomes. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00725

  5. Marchesi JR (2010) Prokaryotic and eukaryotic diversity of the human gut. In: Adv. Appl. Microbiol. Elsevier, pp 43–62

  6. Costello EK, Lauber CL, Hamady M, et al. (2009) Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 326:1694–1697. https://doi.org/10.1126/science.1177486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ursell LK, Clemente JC, Rideout JR, et al. (2012) The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 129:1204–1208. https://doi.org/10.1016/j.jaci.2012.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290. https://doi.org/10.1038/nrmicro2540

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Kalyan S, Steck N, et al. (2015) Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun 6:6440. https://doi.org/10.1038/ncomms7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goodrich JK, Davenport ER, Waters JL, et al. (2016) Cross-species comparisons of host genetic associations with the microbiome. Science 352:532–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davenport ER (2016) Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes 7:178–184. https://doi.org/10.1080/19490976.2016.1155022

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451. https://doi.org/10.1016/j.tree.2012.03.011

    Article  PubMed  Google Scholar 

  13. Baxter NT, Wan JJ, Schubert AM, et al. (2015) Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl Environ Microbiol. 81:396–404. https://doi.org/10.1128/AEM.02303-14

    Article  PubMed  Google Scholar 

  14. Colston TJ, Jackson CR (2016) Invited review: microbiome evolution along divergent branches of the vertebrate tree of life: what’s known and unknown. Mol Ecol. https://doi.org/10.1111/mec.13730

  15. Roeselers G, Mittge EK, Stephens WZ, et al. (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benson AK, Kelly SA, Legge R, et al. (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad. Sci 107:18933–18938. https://doi.org/10.1073/pnas.1007028107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226. https://doi.org/10.1371/journal.pbio.1002226

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nolte AW, Tautz D (2010) Understanding the onset of hybrid speciation. Trends Genet 26:54–58. https://doi.org/10.1016/j.tig.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Janson EM, Stireman JO, Singer MS, Abbot P (2008) Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012. https://doi.org/10.1111/j.1558-5646.2008.00348.x

    Article  PubMed  Google Scholar 

  20. Durand J-D (2003) Insight into the origin of endemic mediterranean ichthyofauna: phylogeography of Chondrostoma genus (Teleostei, Cyprinidae). J Hered 94:315–328. https://doi.org/10.1093/jhered/esg074

    Article  CAS  PubMed  Google Scholar 

  21. Robalo JI, Almada VC, Levy A, Doadrio I (2007) Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol 42:362–372. https://doi.org/10.1016/j.ympev.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  22. Costedoat C, Pech N, Salducci M-D, et al. (2005) Evolution of mosaic hybrid zone between invasive and endemic species of Cyprinidae through space and time. Biol J Linn Soc 85:135–155

    Article  Google Scholar 

  23. Kozich JJ, Westcott SL, Baxter NT, et al. (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galan M, Razzauti M, Bard E, et al. (2016) 16S rRNA amplicon sequencing for epidemiological surveys of bacteria in wildlife. mSystems 1:e00032–e00016. https://doi.org/10.1128/mSystems.00032-16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC, Haas BJ, Clemente JC, et al. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26:1641–1650. https://doi.org/10.1093/molbev/msp077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. https://doi.org/10.1128/AEM.01996-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinheiro J, Bates D, DebRoy S, et al (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1–127

  31. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, https://www.R-project.org/

    Google Scholar 

  32. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paliy O, Shankar V (2016) Application of multivariate statistical techniques in microbial ecology. Mol Ecol 25:1032–1057. https://doi.org/10.1111/mec.13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oksanen J, Blanchet G, Friendly R, et al (2016) Vegan: community ecology package. R package version 2.4–1

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  36. Sabino-Pinto J, Bletz MC, Islam MM, et al. (2016) Composition of the cutaneous bacterial community in japanese amphibians: Effects of captivity, host species, and body region. Microb Ecol 72:460–469. https://doi.org/10.1007/s00248-016-0797-6

    Article  PubMed  Google Scholar 

  37. Huttenhower C, Gevers D, Knight R, et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  38. Smith CC, Snowberg LK, Caporaso JG, et al (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J

  39. Giatsis C, Sipkema D, Smidt H, et al. (2015) The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci Rep 5:18206. https://doi.org/10.1038/srep18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muegge BD, Kuczynski J, Knights D, et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974. https://doi.org/10.1126/science.1198719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingerslev H-C, von Gersdorff JL, Lenz Strube M, et al. (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424–425:24–34. https://doi.org/10.1016/j.aquaculture.2013.12.032

    Article  Google Scholar 

  42. Liu H, Guo X, Gooneratne R, et al. (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340. https://doi.org/10.1038/srep24340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sullam KE, Essinger SD, Lozupone CA, et al. (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis: fish gut bacterial communities. Mol Ecol 21:3363–3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  44. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 35:1729–1739. https://doi.org/10.1016/j.fsi.2013.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Yan Q, Ringø E, et al. (2016) The influence of weight and gender on intestinal bacterial community of wild largemouth bronze gudgeon (Coreius guichenoti, 1874). BMC Microbiol. https://doi.org/10.1186/s12866-016-0809-1

  47. Bolnick DI, Snowberg LK, Hirsch PE, et al. (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. https://doi.org/10.1038/ncomms5500

  48. Gomez A, Luckey D, Taneja V (2015) The gut microbiome in autoimmunity: sex matters. Clin Immunol 159:154–162. https://doi.org/10.1016/j.clim.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nunn CL, Lindenfors P, Pursall ER, Rolff J (2009) On sexual dimorphism in immune function. Philos Trans R Soc B Biol Sci 364:61–69. https://doi.org/10.1098/rstb.2008.0148

    Article  Google Scholar 

  50. Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494. https://doi.org/10.1111/1574-6941.12136

    Article  CAS  PubMed  Google Scholar 

  51. Šimková A, Civáňová K, Gettová L, Gilles A (2013) Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): the evolution of MHC IIB genes. PLoS One 8:e65883. https://doi.org/10.1371/journal.pone.0065883

    Article  PubMed  PubMed Central  Google Scholar 

  52. Corse E, Costedoat C, Pech N, et al. (2009) Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone. Front Zool 6:26. https://doi.org/10.1186/1742-9994-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  53. Corse E, Pech N, Sinama M, et al. (2015) When anthropogenic river disturbance decreases hybridisation between non-native and endemic cyprinids and drives an ecomorphological displacement towards juvenile state in both species. PLoS One 10:e0142592. https://doi.org/10.1371/journal.pone.0142592

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mansfield GS, Desai AR, Nilson SA, et al. (2010) Characterization of rainbow trout (Oncorhynchus mykiss) intestinal microbiota and inflammatory marker gene expression in a recirculating aquaculture system. Aquaculture 307:95–104. https://doi.org/10.1016/j.aquaculture.2010.07.014

    Article  CAS  Google Scholar 

  55. Batista S, Ozório ROA, Kollias S, et al. (2016) Changes in intestinal microbiota, immune- and stress-related transcript levels in Senegalese sole (Solea senegalensis) fed plant ingredient diets intercropped with probiotics or immunostimulants. Aquaculture 458:149–157. https://doi.org/10.1016/j.aquaculture.2016.03.002

    Article  CAS  Google Scholar 

  56. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00207

  57. Wu S, Wang G, Angert ER, et al. (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440. https://doi.org/10.1371/journal.pone.0030440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Flint HJ, Bayer EA, Rincon MT, et al. (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. https://doi.org/10.1038/nrmicro1817

    Article  CAS  PubMed  Google Scholar 

  59. Tsuchiya C, Sakata T, Sugita H (2007) Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett Appl Microbiol. https://doi.org/10.1111/j.1472-765X.2007.02258.x

  60. Li Z, Wright A-DG, Si H, et al. (2016) Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses: changes in rumen microbiome and metabolites. Environ Microbiol Rep. 8:1016–1023. https://doi.org/10.1111/1758-2229.12482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Maxime Galan (UMR CBGP, Montferrier-sur-lez) for technical advices. We thank the plateform Genotypage—Séquençage (Université Montpellier, IRD, CNRS, EPHE), and particularly Frédérique Cerqueira for her technical help. We are also grateful to Benjamin Hérodet (Fédération de l’Ain pour la pêche et la protection des milieux aquatiques) for help in the carrying out of the field sampling.

Funding

The study has been funded by Electricité de France within the project FACIES developing scientific advances in favor of Aquatic System Biodiversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Guivier.

Electronic Supplementary Material

ESM 1

Supplementary Fig. S1. Alpha diversity rarefactions curves. Procedure of rarefactions from 10 to 100,000 sequences with 20 steps and 100 iterations for A) Shannon and B) Phylogenetic Diversity indices. (PDF 135 kb)

ESM 2

Supplementary Fig. S2. Principal Coordinates Analysis exploring the effect tissues and species on the dissimilarities of microbiota compositions. For the A) Bray-Curtis, B) Jaccard and C) weighted Unifrac distance matrices we present the two first axes of independent PCoA analyses performed. Each point corresponds to one microbiota sample colored following 1) the 4 mucosal tissues: caudal fin (blue triangle), gills (orange circle), midgut (green triangle) and hindgut (purple triangle); 2) the two species: C. nasus (orange triangle) and P. toxostoma (green square). (PDF 159 kb)

ESM 3

Supplementary Fig. S3. Common and specific OTUs of P. toxostoma and C. nasus in the different mucosal tissues. Venn diagram showed numbers and percentages of OTUs specific to P. toxostoma, C. nasus and shared by the two species in caudal fin, gills, midgut and hindgut. (PDF 194 kb)

ESM 4

Supplementary Fig. S4. Cumulative bar charts of main bacterial phyla present in mucosal tissues of C. nasus and P. toxostoma. Percentages show the mean relative abundance of each phylum for each sample from the 1000 rarefied OTU tables by A) caudal fin, B) gills, C) midgut and D) hindgut (PDF 258 kb)

ESM 5

(PDF 255 kb)

ESM 6

(PDF 338 kb)

ESM 7

(PDF 266 kb)

ESM 8

(PDF 257 kb)

ESM 9

(PDF 287 kb)

ESM 10

(PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guivier, E., Martin, JF., Pech, N. et al. Microbiota Diversity Within and Between the Tissues of Two Wild Interbreeding Species. Microb Ecol 75, 799–810 (2018). https://doi.org/10.1007/s00248-017-1077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1077-9

Keywords

Navigation