Advertisement

Microbial Ecology

, Volume 75, Issue 3, pp 555–561 | Cite as

Effects of Caatinga Plant Extracts in Planktonic Growth and Biofilm Formation in Ralstonia solanacearum

  • Carolina Barbosa MalafaiaEmail author
  • Ana Cláudia Silva Jardelino
  • Alexandre Gomes Silva
  • Elineide Barbosa de Souza
  • Alexandre José Macedo
  • Maria Tereza dos Santos Correia
  • Márcia Vanusa Silva
Notes and Short Communications

Abstract

This study describes the first antibiofilm and antibacterial screening for plants from Caatinga against Ralstonia solanacearum, a causal agent of bacterial wilt that presents serious difficulties in control. There were prepared 22 aqueous extracts of plants collected in the Vale do Catimbau—PE, Brazil. The potential antibacterial activity was evaluated by absorbance in OD600 and the antibiofilm activity through the crystal violet method, both of them performed in microplate against isolates of R. solanacearum biofilm formers. The results of the screening showed that Jacaranda rugosa presented antimicrobial activity higher than 90%, while Harpochilus neesianus and Myroxylon peruiferum presented antibiofilm activity higher than 50% for all tested isolates. However, Croton heliotropiifolius showed both the activities, being thus very promising for application in the control of this phytopathogen. The search for viable alternatives to the development of new bioactive compounds safe for the environment, humans, and animals from an adverse and scarce environment such as the Caatinga and encouraged us to find plants that produce effective metabolites against phytopathogenic microorganisms. This in vitro screening is important to guide the development of new products in addition to guide research studies of bioactive compounds.

Keywords

Phytopathogens Antibiofilm Myroxylon peruiferum Harpochilus neesianus Jacaranda rugosa Croton heliotropiifolius 

Notes

Acknowledgments

The authors would like to acknowledge Brazilian agencies and companies that have supported this research: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Yuliar, Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30:1–11.  https://doi.org/10.1264/jsme2.ME14144 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Meng F (2013) The virulence factors of the bacterial wilt pathogen Ralstonia solanacearum. J Plant Pathol Microbiol 4:3–5.  https://doi.org/10.4172/2157-7471.1000168 CrossRefGoogle Scholar
  3. 3.
    Mansfield J, Genin S, Magori S, et al. (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614–629.  https://doi.org/10.1111/j.1364-3703.2012.00804.x CrossRefPubMedGoogle Scholar
  4. 4.
    Bae C, Han SW, Song YR, et al. (2015) Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor. Appl. Genet. 128:1219–1229.  https://doi.org/10.1007/s00122-015-2521-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Kang Y, Liu H, Genin S, et al. (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol. Microbiol. 46:427–437.  https://doi.org/10.1046/j.1365-2958.2002.03187.x CrossRefPubMedGoogle Scholar
  6. 6.
    Dow JM, Crossman L, Findlay K, et al. (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. U. S. A. 100:10995–11000.  https://doi.org/10.1073/pnas.1833360100 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ramey BE, Koutsoudis M, Von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7:602–609.  https://doi.org/10.1016/j.mib.2004.10.014 CrossRefPubMedGoogle Scholar
  8. 8.
    Joe MM, Benson A, Saravanan VS, Sa T (2015) In vitro antibacterial activity of nanoemulsion formulation on biofilm, AHL production, hydrolytic enzyme activity, and pathogenicity of Pectobacterium carotovorum sub sp. carotovorum. Physiol. Mol. Plant Pathol. 91:46–55.  https://doi.org/10.1016/j.pmpp.2015.05.009 CrossRefGoogle Scholar
  9. 9.
    Muranaka LS, Takita MA, Olivato JC, et al. (2012) Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. J. Bacteriol. 194:4561–4569.  https://doi.org/10.1128/JB.00436-12 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187–209.  https://doi.org/10.1146/annurev.micro.56.012302.160705 CrossRefPubMedGoogle Scholar
  11. 11.
    Trentin S, Macedo AJ (2013) Clínica E Estratégias De Combate. Rev Lib 14:113–238Google Scholar
  12. 12.
    Venturoso LR, Gavassoni WL, Conus LA, Souza FR (2011) Inibição Do Crescimento in Vitro De Fitopatógenos Sob Diferentes Concentrações de Extratos de Plantas Medicinais. Arq Inst Biol 78:89–95Google Scholar
  13. 13.
    Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4:273.  https://doi.org/10.3389/fpls.2013.00273 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 70:343–349.  https://doi.org/10.1016/S0378-8741(99)00187-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Sandasi M, Leonard CM, Viljoen AM (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 50:30–35.  https://doi.org/10.1111/j.1472-765X.2009.02747.x CrossRefPubMedGoogle Scholar
  16. 16.
    Basso LA, Pereira Da Silva LH, Fett-Neto AG, et al. (2005) The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases - a review. Mem. Inst. Oswaldo Cruz 100:475–506.  https://doi.org/10.1590/S0074-02762005000600001 CrossRefPubMedGoogle Scholar
  17. 17.
    Trentin DDS, Giordani RB, Zimmer KR, et al. (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol. 137:327–335.  https://doi.org/10.1016/j.jep.2011.05.030 CrossRefGoogle Scholar
  18. 18.
    Silva LN, Trentin DS, Zimmer KR, et al. (2015) Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation. Pharm. Biol. 53:464–468.  https://doi.org/10.3109/13880209.2014.922587 CrossRefPubMedGoogle Scholar
  19. 19.
    Kawsud P, Puripattanavong J, Teanpaisan R (2014) Screening for anticandidal and antibiofilm activity of some herbs in Thailand. Trop. J. Pharm. Res. 13:1495–1501.  https://doi.org/10.4314/tjpr.v13i9.16 CrossRefGoogle Scholar
  20. 20.
    Nikolić M, Vasić S, Đurđević J, et al. (2014) Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujev J Sci UDC 36192548:129–136CrossRefGoogle Scholar
  21. 21.
    Barnard C, Daberkow S, Padgitt M, et al. (1999) Alternative measures of pesticide use. J Health Soc Policy 11:31–40.  https://doi.org/10.1300/J045v11n02_03 CrossRefPubMedGoogle Scholar
  22. 22.
    Minz S (2012) The effect of plant extracts on the growth of wilt causing fungi Fusarium oxysporum. J Pharm Biol Sci 4:13–16Google Scholar
  23. 23.
    Gibbons S (2004) Anti-staphylococcal plant natural products. Nat. Prod. Rep. 21:263–277.  https://doi.org/10.1039/b212695h CrossRefPubMedGoogle Scholar
  24. 24.
    Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9:117–128.  https://doi.org/10.1038/nrd3013 CrossRefPubMedGoogle Scholar
  25. 25.
    Mutalib LY, Nuraddin SM, Toma S, Aka H (2015) Phytochemical screening , antibacterial and antibiofilm evaluation of Lagenaria siceraria fruit growing in Kurdistan Region\Iraq. Joournal Pharmacogn Phytochem 4:8234Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Carolina Barbosa Malafaia
    • 1
    • 2
    Email author
  • Ana Cláudia Silva Jardelino
    • 1
  • Alexandre Gomes Silva
    • 3
  • Elineide Barbosa de Souza
    • 4
  • Alexandre José Macedo
    • 5
  • Maria Tereza dos Santos Correia
    • 1
  • Márcia Vanusa Silva
    • 1
  1. 1.Departamento de BioquímicaUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  2. 2.Centro de Tecnologias Estratégicas do Nordeste (CETENE)RecifeBrazil
  3. 3.Instituto Nacional do SemiáridoCampina GrandeBrazil
  4. 4.Departamento de Biologia/Área de MicrobiologiaUniversidade Federal Rural de Pernambuco (UFRPE)RecifeBrazil
  5. 5.Faculdade de Farmácia e Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations