Microbial Ecology

, Volume 75, Issue 3, pp 790–798 | Cite as

Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica

  • Lucija Nuskern
  • Marin Ježić
  • Zlatko Liber
  • Jelena Mlinarec
  • Mirna Ćurković-PericaEmail author
Host Microbe Interactions


Biotic stress caused by virus infections induces epigenetic changes in infected plants and animals, but this is the first report on methylation pattern changes in a fungus after mycovirus infection. As a model pathosystem for mycovirus-host interactions, we used Cryphonectria hypovirus 1 (CHV1) and its host fungus Cryphonectria parasitica, in which deregulation of methylation cycle enzymes upon virus infection was observed previously. Six CHV1 strains of different subtypes were transferred into three different C. parasitica isolates in order to assess the effect of different CHV1 strains and/or subtypes on global cytosine methylation level in infected fungus, using methylation-sensitive amplification polymorphism (MSAP). Infection with CHV1 affected the methylation pattern of the C. parasitica genome; it increased the number and diversity of methylated, hemi-methylated, and total MSAP markers found in infected fungal isolates compared to virus-free controls. The increase in methylation levels correlated well with the CHV1-induced reduction of fungal growth in vitro, indicating that C. parasitica genome methylation upon CHV1 infection, rather than being the defensive mechanism of the fungus, is more likely to be the virulence determinant of the virus. Furthermore, the severity of CHV1 effect on methylation levels of infected C. parasitica isolates depended mostly on individual CHV1 strains and on the combination of host and virus genomes, rather than on the virus subtype. These novel findings broaden our knowledge about CHV1 strains which could potentially be used in human-aided biocontrol of chestnut blight, a disease caused by C. parasitica in chestnut forest ecosystems and orchards.


Fungus-mycovirus interaction Biotic stress MSAP epigenotyping Biocontrol Chestnut blight 



This research was funded by Croatian Science Foundation (project no. 5381) and SNSF (SCOPES project no. IZ73Z0_152525/1). We thank Dr. Daniel Rigling for providing the virus strains EP713 and SHE30 and Dr. Zlatko Šatović for the useful suggestions on data analysis.


  1. 1.
    Cureau N, AlJahdali N, Vo N, Carbonero F (2016) Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives. Epigenomics 8:1259–1273. CrossRefPubMedGoogle Scholar
  2. 2.
    Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 4:694–699. CrossRefGoogle Scholar
  3. 3.
    Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Pogribny I (2003) Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation? Mutat Res-Fundam Mol Mech Mutagen 529:13–20. CrossRefGoogle Scholar
  4. 4.
    Hua S, Qi B, Fu YP, Li Y (2017) DNA methylation changes in Pleurotus eryngii subsp. tuoliensis (Bailinggu) in response to low temperature stress. Int. J. Agric. Biol. 19:328–334.  10.17957/IJAB/15.0286 CrossRefGoogle Scholar
  5. 5.
    Jones AL, Thomas CL, Maule AJ (1998) De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17:6385–6393. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of virus-derived small RNAs in plants. Front. Microbiol. 6:1–12. Google Scholar
  7. 7.
    Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol. 153:1859–1870. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82:8997–9007. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol. 18:439–447. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Reyna-López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710. CrossRefPubMedGoogle Scholar
  11. 11.
    Allen TD, Dawe AL, Nuss DL (2003) Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eucaryotic cell 2:1253–1265. CrossRefGoogle Scholar
  12. 12.
    Allen TD, Nuss DL (2004) Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J. Virol. 78:4145–4155. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liao S, Li R, Shi L, Wang J, Shang J, Zhu P, Chen B (2012) Functional analysis of an S-adenosylhomocysteine hydrolase homolog of chestnut blight fungus. FEMS Microbiol. Lett. 336:64–72. CrossRefPubMedGoogle Scholar
  14. 14.
    Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42:311–338. CrossRefPubMedGoogle Scholar
  15. 15.
    Allemann C, Hoegger PJ, Heiniger U, Rigling D (1999) Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe, assessed using restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 8:843–854. CrossRefPubMedGoogle Scholar
  16. 16.
    Van Alfen NK, Jaynes RA, Anagnostakis SL, Day PR (1975) Chestnut blight: biological control by transmissible hypovirulence in Endothia parasitica. Science 189:890–891. CrossRefPubMedGoogle Scholar
  17. 17.
    Grente J, Berthelay-Sauret S (1978) Biological control of chestnut blight in France. In: MacDonald W (ed) American chestnut symposium proceedings. West Wirginia University Agricultural Experiment Station and United States Department of Agriculture, Morgantown, pp 30–34Google Scholar
  18. 18.
    Elliston JE (1985) Characteristics of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence. Phytopathology 75:151–158. CrossRefGoogle Scholar
  19. 19.
    Peever TL, Liu YC, Cortesi P, Milgroom MG (2000) Variation in tolerance and virulence in the chestnut blight fungus-hypovirus interaction. Appl. Environ. Microbiol. 66:4863–4869. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hillman BI, Suzuki N (2004) Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63:423–472. CrossRefPubMedGoogle Scholar
  21. 21.
    Gobbin D, Hoegger PJ, Heiniger U, Rigling D (2003) Sequence variation and evolution of Cryphonectria hypovirus 1 (CHV-1) in Europe. Virus Res. 97:39–46. CrossRefPubMedGoogle Scholar
  22. 22.
    Sotirovski K, Milgroom MG, Rigling D, Heiniger U (2006) Occurrence of Cryphonectria hypovirus 1 in the chestnut blight fungus in Macedonia. For. Pathol. 36:136–143. CrossRefGoogle Scholar
  23. 23.
    Krstin L, Novak-Agbaba S, Rigling D, Krajačić M, Ćurković-Perica M (2008) Chestnut blight fungus in Croatia: diversity of vegetative compatibility types, mating types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathol. 57:1086–1096. CrossRefGoogle Scholar
  24. 24.
    Robin C, Lanz S, Soutrenon A, Rigling D (2010) Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in south-eastern France is associated with fitness-related traits. Biol. Control 53:55–61. CrossRefGoogle Scholar
  25. 25.
    Krstin L, Novak-Agbaba S, Rigling D, Ćurković-Perica M (2011) Diversity of vegetative compatibility types and mating types of Cryphonectria parasitica in Slovenia and occurrence of associated Cryphonectria hypovirus 1. Plant Pathol. 60:752–761. CrossRefGoogle Scholar
  26. 26.
    Montenegro D, Aguín O, Sainz MJ, Hermida M, Mansilla JP (2008) Diversity of vegetative compatibility types, distribution of mating types and occurrence of hypovirulence of Cryphonectria parasitica in chestnut stands in NW Spain. For. Ecol. Manag. 256:973–980. CrossRefGoogle Scholar
  27. 27.
    Zamora P, Martín AB, Rigling D, Diez JJ (2012) Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus-infected isolates. For. Pathol. 42:412–419. CrossRefGoogle Scholar
  28. 28.
    Akilli S, Ulubaş Serçe Ç, Katircioǧlu YZ, Maden S, Rigling D (2013) Characterization of hypovirulent isolates of the chestnut blight fungus, Cryphonectria parasitica from the Marmara and Black Sea regions of Turkey. Eur. J. Plant Pathol. 135:323–334. CrossRefGoogle Scholar
  29. 29.
    Chen B, Nuss DL (1999) Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virol. 73:985–992PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bryner SF, Rigling D (2011) Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am. Nat. 177:65–74. CrossRefPubMedGoogle Scholar
  31. 31.
    Krstin L, Katanić Z, Ježić M, Poljak I, Nuskern L, Matković I, Idžojtić M, Ćurković-Perica M (2017) Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. Pest Manag. Sci. 73:582–589. CrossRefPubMedGoogle Scholar
  32. 32.
    Nuskern L, Tkalec M, Ježić M, Katanić Z, Krstin L, Ćurković-Perica M (2017) Cryphonectria hypovirus 1-induced changes of stress enzyme activity in transfected phytopathogenic fungus Cryphonectria parasitica. Microb. Ecol. 74:302–311. CrossRefPubMedGoogle Scholar
  33. 33.
    Bauman JM (2015) A comparison of the growth and asexual reproduction by Cryphonectria parasitica isolates infected with hypoviruses CHV3-County Line, CHV1-Euro7, and CHV1-Ep713. Am. J. Plant Sci. 6:73–83CrossRefGoogle Scholar
  34. 34.
    Ježić M, Krstin L, Poljak I, Liber Z, Idžojtić M, Jelić M, Meštrović J, Zebec M, Ćurković-Perica M (2014) Castanea sativa: genotype-dependent recovery from chestnut blight. Tree Genet. Genomes 10:101–110. CrossRefGoogle Scholar
  35. 35.
    Cortesi P, Milgroom MG (1998) Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl. Environ. Microbiol. 64:2988–2994PubMedPubMedCentralGoogle Scholar
  36. 36.
    Schulz B, Eckstein RL, Durka W (2014) Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Mol. Ecol. 23:3523–3537. CrossRefPubMedGoogle Scholar
  37. 37.
    Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Tabarlet P, Gugerli F (2010) Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome / Natl Res Counc Canada 53:302–310. CrossRefGoogle Scholar
  38. 38.
    Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation-sensitive amplification polymorphisms for epigenetic population studies. Mol. Ecol. Resour. 13:642–653. CrossRefPubMedGoogle Scholar
  39. 39.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  40. 40.
    Howitt RLJ, Beever RE, Pearson MN, Forster RLS (2001) Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant “potex-like” viruses. J Gen Virol 82:67–78. CrossRefPubMedGoogle Scholar
  41. 41.
    Howitt RLJ, Beever RE, Pearson MN, Forster RLS (2006) Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant “potex-like” viruses. Arch. Virol. 151:563–579. CrossRefPubMedGoogle Scholar
  42. 42.
    Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotina sclerotorium. J Gen Virol 87:241–249. CrossRefPubMedGoogle Scholar
  43. 43.
    Shapira R, Choi GH, Nuss DL (1991) Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10:731–739PubMedPubMedCentralGoogle Scholar
  44. 44.
    Deng F, Allen TD, Hillman BI, Nuss DL (2007) Comparative analysis of alterations in host phenotype and transcript accumulation following hypovirus and mycoreovirus infections of the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 6:1286–1298. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee KM, Cho WK, Yu J, Son M, Choi H, Min K, Lee YW, Kim KH (2014) A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. PLoS One 9:e100989. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li H, Fu Y, Jiang D, Li G, Ghabrial SA, Yi X (2008) Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res. 135:95–106. CrossRefPubMedGoogle Scholar
  47. 47.
    Wang H, Hao L, Shung CY, Sunter G, Bisaro DM (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of methylation-mediated transcriptional gene silencing by βc1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 7:e1002329. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Birdwell CE, Queen KJ, Kilgore P, Rollyson P, Trutschl M, Cvek U, Scott RS (2014) Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J. Virol. 88:11442–11458. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sotirovski K, Rigling D, Heiniger U, Milgroom MG (2011) Variation in virulence of Cryphonectria hypovirus 1 in Macedonia. For. Pathol. 41:59–65. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lucija Nuskern
    • 1
  • Marin Ježić
    • 1
  • Zlatko Liber
    • 1
  • Jelena Mlinarec
    • 1
  • Mirna Ćurković-Perica
    • 1
    Email author
  1. 1.Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations