Microbial Ecology

, Volume 75, Issue 2, pp 505–514 | Cite as

Skin Bacterial Community Reorganization Following Metamorphosis of the Fire-Bellied Toad (Bombina orientalis)

  • Arnaud Bataille
  • Larisa Lee-Cruz
  • Binu Tripathi
  • Bruce Waldman
Host Microbe Interactions


In organisms with complex life histories, dramatic changes in microbial community structure may occur with host development and immune system maturation. Amphibian host susceptibility to diseases such as chytridiomycosis may be affected by the reorganization of skin microbial community structure that occurs during metamorphosis. We tracked changes in the bacterial communities inhabiting skin of Korean fire-bellied toads (Bombina orientalis) that we infected as tadpoles with different strains of Batrachochytrium dendrobatidis (Bd), the pathogenic fungus that causes chytridiomycosis. We found that B. orientalis undergoes a major change in skin bacterial community composition between 5 and 15 days following metamorphosis. Richness indices and phylogenetic diversity measures began to diverge earlier, between aquatic and terrestrial stages. Our results further reveal differences in skin bacterial community composition among infection groups, suggesting that the effect of Bd infection on skin microbiome composition may differ by Bd strain. Additional studies are needed to further investigate the structural and temporal dynamics of microbiome shifts during metamorphosis in wild and captive amphibian populations. Analyses of the ontogeny of microbiome shifts may contribute to an understanding of why amphibians vary in their susceptibility to chytridiomycosis.


Amphibians Batrachochytrium dendrobatidis Chytridiomycosis Development Microbiome 



We thank Jaehyub Shin for assistance with laboratory work. The research was supported by the National Research Foundation of Korea (NRF), and funded by the Ministry of Education (2014-063422 to A.B. and 2015R1D1A1A01057282 to B.W) and by the Ministry of Science, ICT, and Future Planning (2010-0002767 and 2012R1A1A2044449 to B.W.) of the Republic of Korea.

Compliance with Ethical Standards

Animal husbandry and experimental protocols were approved by the Institutional Animal Care and Use Committee (SNU-140827-2) and the Institutional Biosafety Committee (SNUIBC-P120725-2-1) of Seoul National University. Fieldwork was conducted under a permit issued by the mayor’s office, Chuncheon, Gangwon Province. The study species is not threatened or legally protected in South Korea.

Supplementary material

248_2017_1034_MOESM1_ESM.docx (1004 kb)
ESM 1 (DOCX 1004 kb)


  1. 1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences Proc Natl Acad Sci USA 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time Science 326:1694–1697CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota Proc Natl Acad Sci USA 104:2927–2932CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B (2011) Skin microbiota: microbial community structure and its potential association with health and disease Infect Genet Evol 11:839–848CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grice EA, Segre JA (2011) The skin microbiome Nat Rev Micro 9:244–253CrossRefGoogle Scholar
  6. 6.
    Brown DD, Cai L (2007) Amphibian metamorphosis Dev Biol 306:20–33CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ellison TR, Mathisen PM, Miller L (1985) Developmental changes in keratin patterns during epidermal maturation Dev Biol 112:329–337CrossRefPubMedGoogle Scholar
  8. 8.
    Marantelli G, Berger L, Speare R, Keegan L (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development Pac Conserv Biol 10:173–179CrossRefGoogle Scholar
  9. 9.
    Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system Immunol Rev 166:221–230CrossRefPubMedGoogle Scholar
  10. 10.
    Du Pasquier L, Flajnik MF (1990) Expression of MHC class II antigens during Xenopus development Dev Immunol 1:85–95CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Salter-Cid L, Nonaka M, Flajnik MF (1998) Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and imp7 genes J Immunol 160:2853–2861PubMedGoogle Scholar
  12. 12.
    Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA (2016) Life history linked to immune investment in developing amphibians Conserv Physiol 4:cow025CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Holden WM, Reinert LK, Hanlon SM, Parris MJ, Rollins-Smith LA (2015) Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis Dev Comp Immunol 48:65–75CrossRefPubMedGoogle Scholar
  14. 14.
    Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2013) The amphibian skin-associated microbiome across species, space and life history stages Mol Ecol 23:1238–1250CrossRefPubMedGoogle Scholar
  15. 15.
    Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ (2015) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas) ISME J 10:934–944CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Longo AV, Savage AE, Hewson I, Zamudio KR (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians R Soc Open Sci 2:140377CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease PLoS One 5:e10957CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus ISME J 3:818–824CrossRefPubMedGoogle Scholar
  19. 19.
    Woodhams DC, Vredenburg VT, Simon M-A, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa Biol Conserv 138:390–398CrossRefGoogle Scholar
  20. 20.
    Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America Proc Natl Acad Sci USA 95:9031–9036CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs EcoHealth 4:125–134CrossRefGoogle Scholar
  22. 22.
    Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KPC, Harris RN, Belden LK, Gratwicke B (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus Proc R Soc B 282:20142881CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians symbiotic bacteria cause the production of emergent anti-fungal metabolites Front Microbiol 5:441CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages Dis Aquat Org 61:75–83CrossRefPubMedGoogle Scholar
  25. 25.
    Tobler U, Schmidt BR (2010) Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans PLoS One 5:e10927CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk DA, Ginestet C, Arthur C-P, Fisher MC (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia Ecol Lett 13:372–382CrossRefPubMedGoogle Scholar
  27. 27.
    Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection Proc Natl Acad Sci USA 11:5049–5058CrossRefGoogle Scholar
  28. 28.
    Bataille A, Cashins SD, Grogan LF, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Marcis A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation Proc R Soc B 282:20143127CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bai C, Liu X, Fisher MC, Garner TWJ, Li Y (2012) Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China Div Distrib 18:307–318Google Scholar
  30. 30.
    Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H, Min MS, Waldman B (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians Mol Ecol 22:4196–4209CrossRefPubMedGoogle Scholar
  31. 31.
    Swei A, Rowley JJL, Rodder D, Diesmos MLL, Diesmos AC, Briggs CJ, Brown R, Cao TT, Cheng TL, Chong RA, Han B, Hero J-M, Hoang HD, Kusrini MD, Le DTT, McGuire JA, Meegaskumbura M, Min M-S, Mulcahy DG, Neang T, Phimmachak S, Rao D-Q, Reeder NM, Schoville SD, Sivongxay N, Srei N, Stock M, Stuart BL, Torres LS, Tran DTA, Tunstall TS, Vieites D, Vredenburg VT (2011) Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6:e23179CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Pond SLK, Shahar-Golan R, Henk DA, Fisher MC (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage Proc Natl Acad Sci USA 108:18732–18736CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, Brown AJP, Walker LA, Gow NAR, Stajich JE, Garner TWJ (2009) Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence Mol Ecol 18:415–429CrossRefPubMedGoogle Scholar
  34. 34.
    Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification Herpetologica 16:183–190Google Scholar
  35. 35.
    Torreilles SL, McClure DE, Green SL (2009) Evaluation and refinement of euthanasia methods for Xenopus laevis J Am Assoc Lab Anim Sci 48:512–516PubMedPubMedCentralGoogle Scholar
  36. 36.
    McMahon TA, Rohr JR (2015) Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis EcoHealth 12:188–193CrossRefPubMedGoogle Scholar
  37. 37.
    Shin J, Bataille A, Kosch TA, Waldman B (2014) Swabbing often fails to detect amphibian chytridiomycosis under conditions of low infection load PLoS One 9:e111091CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Goka K, Yokoyama JUN, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan Mol Ecol 18:4757–4774CrossRefPubMedGoogle Scholar
  39. 39.
    Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Heros M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Coiling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis Dis Aquat Org 73:175–192CrossRefPubMedGoogle Scholar
  40. 40.
    Masella AP, Bartram AK, Truszkowki JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences BMC Bioinformatics 13:31CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schloss PD, Westcott SI, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chun J, Lee HJ, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  43. 43.
    Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distribution and richness estimations in fungal metagenomics—lessons learned from community ecology Mol Ecol 20:275–285CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou J, Wu L, Deng Y, Zhi X, Jiang Y-H, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y (2011) Reproducibility and quantitation of amplicon sequencing-based detection ISME J 5:1303–1313CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Faith DP, Baker AM (2006) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges Evol Bioinforma 2:121–128Google Scholar
  46. 46.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix Mol Biol Evol 26:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Statist Soc B 57:289–300Google Scholar
  48. 48.
    R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. 49.
    Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome diversity differs between amphibian skin regions: implications for chytridiomycosis mitigation efforts Microbiol Ecol 71:221–232CrossRefGoogle Scholar
  50. 50.
    Becker MH, Richards-Zawacki CL, Gratwicke B, Belden LK (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki) Biol Conserv 176:199–206CrossRefGoogle Scholar
  51. 51.
    Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KPC (2015) Immunomodulatory metabolites released by the frog-killing fungus, Batrachochytrium dendrobatidis Infect Immun 83:4565–4570CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments Integr Comp Biol 51:552–562CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Biological SciencesSeoul National UniversitySeoulSouth Korea
  2. 2.CIRAD, UMR ASTREMontpellierFrance

Personalised recommendations