Advertisement

Microbial Ecology

, Volume 75, Issue 1, pp 163–173 | Cite as

Distinct Bloom Dynamics of Toxic and Non-toxic Microcystis (Cyanobacteria) Subpopulations in Hoedong Reservoir (Korea)

  • Bum Soo Park
  • Zhun Li
  • Yoon-Ho Kang
  • Hyeon Ho Shin
  • Jae-Hyoung Joo
  • Myung-Soo Han
Environmental Microbiology

Abstract

Despite the importance of understanding the bloom mechanisms that influence cyanobacterial toxin production, the dynamics of toxic Microcystis subpopulations are largely unknown. Here, we quantified both toxic and entire (i.e., toxic and non-toxic) Microcystis populations based on the microcystin synthetase E (mcyE) and 16S ribosomal RNA genes. Samples were collected from pelagic water and sediments twice per week from October to December 2011, and we investigated the effects of physicochemical factors (pH, water temperature, dissolved oxygen, nutrients, etc.) and biological factors (ciliates and zooplankton) on the abundance of toxic and non-toxic Microcystis. During the study period, Microcystis blooms were composed of toxic and non-toxic subpopulations. Resting stage Microcystis in sediment may be closely linked to Microcystis populations in pelagic water and may contribute to the toxic subpopulation composition in surface Microcystis blooms. In pelagic water, the toxic and entire Microcystis population had a significant positive correlation with the pH and water temperature (p < 0.05). However, their responses to changes in environmental factors were thought to be distinct. The ratio of the toxic to non-toxic Microcystis subpopulations was significantly (p < 0.05) enhanced by a lower pH and water temperature and an increase in protozoan grazers, reflecting environmental stresses. These results suggest that the toxic and non-toxic subpopulations of Microcystis have distinct tolerance levels against these stressors. The intracellular microcystin (MC) concentration was positively associated with the abundance of the mcyE-positive Microcystis. By comparison, the MC concentration in pelagic water body (extracellular) increased when Microcystis was lysed due to environmental stresses.

Keywords

Cyanobacterial bloom Toxic Microcystis subpopulation Environmental stress Predation pressure 

Notes

Acknowledgements

This work was supported by a Mid-career Researcher Program (2015R1A2A2A01008115) through an NRF (National Research Foundation), grant funded by the MEST (Ministry of Education, Science and Technology), and a grant from the Marine Biotechnology Program Funded by the Ministry of Oceans and Fisheries.

Supplementary material

248_2017_1030_MOESM1_ESM.docx (13 kb)
Table S1 (DOCX 13 kb)

References

  1. 1.
    Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp. 113–153Google Scholar
  2. 2.
    Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp. 51–77Google Scholar
  3. 3.
    Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatase-1 and 2A from both mammals and higher plants FEBS Lett. 264:187–192CrossRefPubMedGoogle Scholar
  4. 4.
    Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp. 14–50Google Scholar
  5. 5.
    Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR Environ Sci Technol 39:4198–4205. doi: 10.1021/Es048249u CrossRefPubMedGoogle Scholar
  6. 6.
    de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Microcystin-producing blooms—a serious global public health issue Ecotox Environ Safe 59:151–163CrossRefGoogle Scholar
  7. 7.
    Wu HM, Wei GJ, Tan X, Li L, Li M (2017) Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms Sci Rep. doi: 10.1038/srep40393
  8. 8.
    Jacoby JM, Collier DC, Welch EB, Hardy FJ, Crayton M (2000) Environmental factors associated with a toxic bloom of Microcystis aeruginosa Can. J. Fish. Aquat. Sci. 57:231–240CrossRefGoogle Scholar
  9. 9.
    Chen L, Gin KYH, He YL (2016) Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa Environ Sci Pollut R 23:3586–3595CrossRefGoogle Scholar
  10. 10.
    Wang C, Feng T, Wang PF, Hou J, Qian J (2017) Understanding the transport feature of bloom-forming Microcystis in a large shallow lake: a new combined hydrodynamic and spatially explicit agent-based modelling approach Ecol. Model. 343:25–38CrossRefGoogle Scholar
  11. 11.
    Kim SG, Joung SH, Ahn CY, Ko SR, Boo SM, Oh HM (2010) Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir FEMS Microbiol. Ecol. 74:93–102. doi: 10.1111/j.1574-6941.2010.00947.x CrossRefPubMedGoogle Scholar
  12. 12.
    Xu Y, Wang GX, Yang WB, Li RH (2010) Dynamics of the water bloom-forming Microcystis and its relationship with physicochemical factors in Lake Xuanwu (China) Environ Sci Pollut R 17:1581–1590. doi: 10.1007/s11356-010-0345-8 CrossRefGoogle Scholar
  13. 13.
    Yoshida M, Yoshida T, Takashima Y, Hosoda N, Hiroishi S (2007) Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake FEMS Microbiol. Lett. 266:49–53. doi: 10.1111/j.1574-6968.2006.00496.x CrossRefPubMedGoogle Scholar
  14. 14.
    Van Wichelen J, van Gremberghe I, Vanormelingen P, Debeer AE, Leporcq B, Menzel D, Codd GA, Descy JP, Vyverman W (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (cyanobacteria) Environ. Microbiol. 12:2797–2813. doi: 10.1111/j.1462-2920.2010.02249.x PubMedCrossRefGoogle Scholar
  15. 15.
    Sarnelle O, Wilson AE (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria Limnol. Oceanogr. 50:1565–1570CrossRefGoogle Scholar
  16. 16.
    Canter HM, Heaney SI, Lund JWG (1990) The ecological significance of grazing on planktonic populations of cyanobacteria by the ciliate Nassula New Phytol. 114:247–263. doi: 10.1111/j.1469-8137.1990.tb00397.x CrossRefGoogle Scholar
  17. 17.
    Fialkowska E, Pajdak-Stos A (1997) Inducible defence against a ciliate grazer, Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria) P Roy Soc B-Biol Sci 264:937–941CrossRefGoogle Scholar
  18. 18.
    van Gremberghe I, Vanormelingen P, Vanelslander B, Van der Gucht K, D'hondt S, De Meester L, Vyverman W (2009) Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing Oikos 118:1647–1658. doi: 10.1111/j.1600-0706.2009.17538.x CrossRefGoogle Scholar
  19. 19.
    Tillmanns AR, Wilson AE, Pick FR, Sarnelle O (2008) Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses Fund Appl Limnol 171:285–295. doi: 10.1127/1863-9135/2008/0171-0285 CrossRefGoogle Scholar
  20. 20.
    Preston T, Stewart WDP, Reynolds CS (1980) Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface Nature 288:365–367CrossRefGoogle Scholar
  21. 21.
    Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. emend. Elenkin Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 293:419–477. doi: 10.1098/rstb.1981.0081 CrossRefGoogle Scholar
  22. 22.
    Takamura N, Yasuno M, Sugahara K (1984) Overwintering of Microcystis aeruginosa Kütz. in a shallow lake J. Plankton Res. 6:1019–1029. doi: 10.1093/plankt/6.6.1019 CrossRefGoogle Scholar
  23. 23.
    Reynolds C, Rogers D (1976) Seasonal variations in the vertical distribution and buoyancy of Microcystis aeruginosa Kütz. emend. Elenkin in Rostherne Mere, England Hydrobiologia 48:17–23CrossRefGoogle Scholar
  24. 24.
    Ståhl-Delbanco A, Hansson LA, Gyllstrom M (2003) Recruitment of resting stages may induce blooms of Microcystis at low N:P ratios J. Plankton Res. 25:1099–1106. doi: 10.1093/plankt/25.9.1099 CrossRefGoogle Scholar
  25. 25.
    Verspagen JMH, Snelder EOFM, Visser PM, Huisman J, Mur LR, Ibelings BW (2004) Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? J. Phycol. 40:260–270. doi: 10.1111/j.1529-8817.2004.03174.x CrossRefGoogle Scholar
  26. 26.
    Brunberg AK, Blomqvist P (2002) Benthic overwintering of Microcystis colonies under different environmental conditions J. Plankton Res. 24:1247–1252. doi: 10.1093/plankt/24.11.1247 CrossRefGoogle Scholar
  27. 27.
    Jang MH, Ha K, Joo GJ (2003) Toxin-mediated interaction between cyanobacteria and native fishes in the eutrophic Hoedong reservoir, South Korea J. Freshw. Ecol. 18:639–646CrossRefGoogle Scholar
  28. 28.
    Greenburg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, Google Scholar
  29. 29.
    APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association (APHA), Washington, DC, Google Scholar
  30. 30.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora Limnol. Oceanogr. 25:943–948CrossRefGoogle Scholar
  31. 31.
    Park BS, Baek SH, Ki JS, Cattolico RA, Han M-S (2012) Assessment of EvaGreen-based quantitative real-time PCR assay for enumeration of the microalgae Heterosigma and Chattonella (Raphidophyceae) J. Appl. Phycol. 24:1555–1567. doi: 10.1007/s10811-012-9816-2 CrossRefGoogle Scholar
  32. 32.
    Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis Int. J. Syst. Bacteriol. 47:693–697CrossRefPubMedGoogle Scholar
  33. 33.
    Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes Appl Environ Microb 69:7289–7297CrossRefGoogle Scholar
  34. 34.
    Park BS, Wang P, Kim JH, Kim JH, Gobler CJ, Han M-S (2014) Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays Harmful Algae 37:133–141. doi: 10.1016/j.hal.2014.04.019 CrossRefGoogle Scholar
  35. 35.
    Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, CrossRefGoogle Scholar
  36. 36.
    Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria New Zeal J Mar Fresh 21:391–399CrossRefGoogle Scholar
  37. 37.
    Davis TW, Gobler CJ (2011) Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay J. Plankton Res. 33:415–430CrossRefGoogle Scholar
  38. 38.
    Panosso R, Carlsson P, Kozlowsky-Suzuki B, Azevedo SMFO, Graneli E (2003) Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains J. Plankton Res. 25:1169–1175. doi: 10.1093/plankt/25.9.1169 CrossRefGoogle Scholar
  39. 39.
    Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT, Dittmann E (2006) A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa Mol. Microbiol. 59:893–906. doi: 10.1111/j.1365-2958.2005.05001.x CrossRefPubMedGoogle Scholar
  40. 40.
    Gerritsen J, Sanders RW, Bradley SW, Porter KG (1987) Individual feeding variability of protozoan and crustacean zooplankton analyzed with flow-cytometry Limnol. Oceanogr. 32:690–699Google Scholar
  41. 41.
    Mohamed ZA, Al-Shehri AM (2013) Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans Ecotox Environ Safe 96:48–52. doi: 10.1016/j.ecoenv.2013.06.015 CrossRefGoogle Scholar
  42. 42.
    Wicks RJ, Thiel PG (1990) Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir Environ Sci Technol 24:1413–1418. doi: 10.1021/Es00079a017 CrossRefGoogle Scholar
  43. 43.
    Briand E, Yepremian C, Humbert JF, Quiblier C (2008) Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions Environ. Microbiol. 10:3337–3348. doi: 10.1111/j.1462-2920.2008.01730.x CrossRefPubMedGoogle Scholar
  44. 44.
    Ohtake A, Shirai M, Aida T, Mori N, Harada KI, Matsuura K, Suzuki M, Nakano M (1989) Toxicity of Microcystis species isolated from natural blooms and purification of the toxin Appl Environ Microb 55:3202–3207Google Scholar
  45. 45.
    Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France) Microb. Ecol. 35:126–135. doi: 10.1007/s002489900067 CrossRefPubMedGoogle Scholar
  46. 46.
    Rohrlack T, Henning M, Kohl J-G (2001) Isolation and characterization of colony-forming Microcystis aeruginosa strains. In: Chorus I (ed) Cyanotoxins: occurrences, causes, consequences. Springer-Verlag KG, Berlin, pp. 152–158Google Scholar
  47. 47.
    Latour D, Salencon MJ, Reyss JL, Giraudet H (2007) Sedimentary imprint of Microcystis aeruginosa (Cyanobacteria) blooms in Grangent reservoir (Loire, France) J. Phycol. 43:417–425. doi: 10.1111/j.1529-8817.2007.00343.x CrossRefGoogle Scholar
  48. 48.
    Misson B, Latour D (2012) Influence of light, sediment mixing, temperature and duration of the benthic life phase on the benthic recruitment of Microcystis J. Plankton Res. 34:113–119CrossRefGoogle Scholar
  49. 49.
    Rivasseau C, Martins S, Hennion MC (1998) Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography J. Chromatogr. A 799:155–169CrossRefPubMedGoogle Scholar
  50. 50.
    Chen W, Song LR, Peng L, Wan N, Zhang XM, Gan NQ (2008) Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions Water Res. 42:763–773CrossRefPubMedGoogle Scholar
  51. 51.
    Rapala J, Lahti K, Sivonen K, Niemela SI (1994) Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a Lett. Appl. Microbiol. 19:423–428. doi: 10.1111/j.1472-765X.1994.tb00972.x CrossRefPubMedGoogle Scholar
  52. 52.
    Lahti K, Rapala J, Fardig M, Niemela M, Sivonen K (1997) Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water Water Res. 31:1005–1012CrossRefGoogle Scholar
  53. 53.
    Hyenstrand P, Rohrlack T, Beattie KA, Metcalf JS, Codd GA, Christoffersen K (2003) Laboratory studies of dissolved radiolabelled microcystin-LR in lake water Water Res. 37:3299–3306CrossRefPubMedGoogle Scholar
  54. 54.
    Gupta S, Gajbhiye VT (2004) Adsorption-desorption, persistence and leaching behavior of thifluzamide in alluvial soil Chemosphere 57:471–480CrossRefPubMedGoogle Scholar
  55. 55.
    Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods J. Appl. Phycol. 22:1–9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Life ScienceHanyang UniversitySeoulSouth Korea
  2. 2.Marine Science InstituteUniversity of Texas at AustinPort AransasUSA
  3. 3.Library of Marine SamplesKorea Institute of Ocean Science and TechnologyGeojeSouth Korea
  4. 4.Monitoring and Analysis DivisionWonju Regional Environmental OfficeWonjuSouth Korea
  5. 5.Research Institute for Natural SciencesHanyang UniversitySeoulSouth Korea

Personalised recommendations