Antagonistic Interactions and Biofilm Forming Capabilities Among Bacterial Strains Isolated from the Egg Surfaces of Lake Sturgeon (Acipenser fulvescens)

  • M. Fujimoto
  • B. Lovett
  • R. Angoshtari
  • P. Nirenberg
  • T. P. Loch
  • K. T. Scribner
  • T. L. Marsh
Microbiology of Aquatic Systems

Abstract

Characterization of interactions within a host-associated microbiome can help elucidate the mechanisms of microbial community formation on hosts and can be used to identify potential probiotics that protect hosts from pathogens. Microbes employ various modes of antagonism when interacting with other members of the community. The formation of biofilm by some strains can be a defense against antimicrobial compounds produced by other taxa. We characterized the magnitude of antagonistic interactions and biofilm formation of 25 phylogenetically diverse taxa that are representative of isolates obtained from egg surfaces of the threatened fish species lake sturgeon (Acipenser fulvescens) at two ecologically relevant temperature regimes. Eight isolates exhibited aggression to at least one other isolate. Pseudomonas sp. C22 was found to be the most aggressive strain, while Flavobacterium spp. were found to be one of the least aggressive and the most susceptible genera. Temperature affected the prevalence and intensity of antagonism. The aggressive strains identified also inhibited growth of known fish pathogens. Biofilm formations were observed for nine isolates and were dependent on temperature and growth medium. The most aggressive of the isolates disrupted biofilm formation of two well-characterized isolates but enhanced biofilm formation of a fish pathogen. Our results revealed the complex nature of interactions among members of an egg associated microbial community yet underscored the potential of specific microbial populations as host probiotics.

Keywords

Microbiome Antagonism Antibiotic Biofilm 

References

  1. 1.
    Hungate RE, Bryant MP, Mah RA (1964) The rumen bacteria and protozoa Annu. Rev. Microbiol. 18:131–166. doi:10.1146/annurev.mi.18.100164.001023 CrossRefPubMedGoogle Scholar
  2. 2.
    Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindguts of wood-eating termites Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 35:930–936PubMedPubMedCentralGoogle Scholar
  3. 3.
    Biswas SR, Wagner HH (2012) Landscape contrast: a solution to hidden assumptions in the metacommunity concept? Landsc. Ecol. 27:621–631. doi:10.1007/s10980-012-9732-5 CrossRefGoogle Scholar
  4. 4.
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology Ecol. Lett. 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  5. 5.
    Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2012) Ageing of the human metaorganism: the microbial counterpart Age 34:247–267. doi:10.1007/s11357-011-9217-5 CrossRefPubMedGoogle Scholar
  6. 6.
    Bosch TCG, McFall-Ngai MJ (2011) Metaorganisms as the new frontier Zoology 114:185–190. doi:10.1016/j.zool.2011.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barnes ME, Bergmann D, Stephenson H, Gabel M, Cordes RJ (2005) Bacterial numbers from landlocked fall Chinook salmon eyed eggs subjected to various formalin treatments as determined by scanning electron microscopy and bacteriological culture methods N. Am. J. Aquac. 67:23–33CrossRefGoogle Scholar
  8. 8.
    Hansen GH, Olafsen JA (1989) Bacterial-colonization of cod (Gadus-Morhua L) and halibut (Hippoglossus-Hippoglossus) eggs in marine aquaculture Appl. Environ. Microbiol. 55:1435–1446PubMedPubMedCentralGoogle Scholar
  9. 9.
    Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold water fish Microb. Ecol. 38:1–26CrossRefPubMedGoogle Scholar
  10. 10.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle Nat Rev Microbiol 8:15–25CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation Nature 436:1171–1175 http://www.nature.com/nature/journal/v436/n7054/suppinfo/nature03912_S1.html CrossRefPubMedGoogle Scholar
  12. 12.
    Narisawa N, Haruta S, Arai H, Ishii M, Igarashi Y (2008) Coexistence of Antibiotic-producing and Antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria Appl. Environ. Microbiol. 74:3887–3894. doi:10.1128/aem.02497-07 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms Appl. Environ. Microbiol. 72:3916–3923. doi:10.1128/aem.03022-05 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections Science 301:105–107. doi:10.1126/science.1084550 CrossRefPubMedGoogle Scholar
  15. 15.
    Baker EA, Borgeson DJ (1999) Lake sturgeon abundance and harvest in black Lake, Michigan, 1975-1999 N Am J Fish Manag 19:1080–1088CrossRefGoogle Scholar
  16. 16.
    Smith KM, Baker EA (2005) Characteristics of spawning lake sturgeon in the upper Black River, Michigan N Am J Fish Manag 25:301–307. doi:10.1577/m03-229.1 CrossRefGoogle Scholar
  17. 17.
    Forsythe PS (2010) Exogenous correlates of migration, spawning, egg deposition and egg mortality in the lake sturgeon (Acipenser fulvescens). Ph.D. Dissertation. Department of Fisheries and Wildlife. Michigan State University. #3417681. pp191Google Scholar
  18. 18.
    Fujimoto M (2012) Microbial succession on the lake sturgeon egg surface: Mechanisms shaping the microbial community assembly during succession and the effect of microbial successional processes on host life history traits. Ph.D. Dissertation, Department of Microbiology and Molecular Genetics, Michigan State University. #3548462. pp201Google Scholar
  19. 19.
    Fujimoto M, Crossman J, Scribner K, Marsh T (2013) Microbial community assembly and succession on Lake sturgeon egg surfaces as a function of simulated spawning stream flow rate Microb. Ecol. 66:500–511. doi:10.1007/s00248-013-0256-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina Cavernicola FEMS Microbiol. Ecol. 35:305–312. doi:10.1111/j.1574-6941.2001.tb00816.x CrossRefPubMedGoogle Scholar
  21. 21.
    Laport MS, Gandelman JFS, Muricy G, Giambiagi-deMarval M, George I (2016) Antagonistic interactions among bacteria isolated from either the same or from different sponges native to the Brazilian coast. J. Marine Sci. Res. Dev. 6(2). doi:10.4172/2155-9910.1000185
  22. 22.
    Mangano S, Michaud L, Caruso C, Brilli M, Bruni V, Fani R, Lo Giudice A (2009) Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis Res. Microbiol. 160:27–37CrossRefPubMedGoogle Scholar
  23. 23.
    Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria Environ. Microbiol. 12:28–39. doi:10.1111/j.1462-2920.2009.02027.x CrossRefPubMedGoogle Scholar
  24. 24.
    Goldschmidt-Clermont E, Wahli T, Frey J, Burr SE (2008) Identification of bacteria from the normal flora of perch, Perca Fluviatilis L., and evaluation of their inhibitory potential towards Aeromonas species J. Fish Dis. 31:353–359. doi:10.1111/j.1365-2761.2008.00912.x CrossRefPubMedGoogle Scholar
  25. 25.
    Spanggaard B, Huber I, Nielsen J, Sick EB, Pipper CB, Martinussen T, Slierendrecht WJ, Gram L (2001) The probiotic potential against vibriosis of the indigenous microflora of rainbow trout Environ. Microbiol. 3:755–765CrossRefPubMedGoogle Scholar
  26. 26.
    Grossart H-P, Schlingloff A, Bernhard M, Simon M, Brinkhoff T (2004) Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea FEMS Microbiol. Ecol. 47:387–396. doi:10.1016/s0168-6496(03)00305-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Lo Giudice A, Brilli M, Bruni V, De Domenico M, Fani R, Michaud L (2007) Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea) FEMS Microbiol. Ecol. 60:383–396. doi:10.1111/j.1574-6941.2007.00300.x CrossRefPubMedGoogle Scholar
  28. 28.
    Long RA, Azam F (2001) Antagonistic interactions among marine pelagic bacteria Appl. Environ. Microbiol. 67:4975–4983. doi:10.1128/aem.67.11.4975-4983.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F (2005) Antagonistic interactions among marine bacteria impede the proliferation of vibrio cholerae Appl. Environ. Microbiol. 71:8531–8536. doi:10.1128/aem.71.12.8531-8536.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX (2016) Microbial interactions lead to rapid micro-scale successions on model marine particles Nat. Commun. 7:11965. doi:10.1038/ncomms11965 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yan L, Boyd KG, Adams DR, Burgess JG (2003) Biofilm-specific cross-species induction of antimicrobial compounds in bacilli Appl. Environ. Microbiol. 69:3719–3727. doi:10.1128/aem.69.7.3719-3727.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Saha M, Ghosh D, Garai D, Jaisankar P, Sarkar KK, Dutta PK, Das S, Jha T, Mukherjee J (2005) Studies on the production and purification of an antimicrobial compound and taxonomy of the producer isolated from the marine environment of the Sundarbans Appl. Microbiol. Biotechnol. 66:497–505. doi:10.1007/s00253-004-1706-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Evans J, Armstrong T-N (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease BMC Ecol. 6:4CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marín-Cevada V, Muñoz-Rojas J, Caballero-Mellado J, Mascarúa-Esparza MA, Castañeda-Lucio M, Carreño-López R, Estrada-de los Santos P, Fuentes-Ramírez LE (2012) Antagonistic interactions among bacteria inhabiting pineapple Appl. Soil Ecol. 61:230–235CrossRefGoogle Scholar
  35. 35.
    Rendueles O, Ghigo J-M (2012) Multi-species biofilms: how to avoid unfriendly neighbors FEMS Microbiol. Rev. 36:972–989. doi:10.1111/j.1574-6976.2012.00328.x CrossRefPubMedGoogle Scholar
  36. 36.
    DeHaan PW, Libants SV, Elliott RF, Scribner KT (2006) Genetic population structure of remnant lake sturgeon populations in the upper Great Lakes basin Trans. Am. Fish. Soc. 135:1478–1492. doi:10.1577/t05-213.1 CrossRefGoogle Scholar
  37. 37.
    Forsythe PS, Scribner KT, Crossman JA, Ragavendran A, Baker EA (2013) Experimental assessment of the magnitude and sources of lake sturgeon egg mortality in a natural stream setting Trans Am Fish Soc 142:1005–1011CrossRefGoogle Scholar
  38. 38.
    Forsythe PS, Scribner KT, Crossman JA, Ragavendran A, Baker EA, Davis C, Smith KK (2012) Environmental and lunar cues are predictive of the timing of river entry and spawning-site arrival in lake sturgeon Acipenser Fulvescens J. Fish Biol. 81:35–53. doi:10.1111/j.1095-8649.2012.03308.x CrossRefPubMedGoogle Scholar
  39. 39.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary Genetics analysis (MEGA) software version 4.0 Mol. Biol. Evol. 24:1596–1599. doi:10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  40. 40.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis Nucleic Acids Res. 37:D141–D145. doi:10.1093/nar/gkn879 CrossRefPubMedGoogle Scholar
  41. 41.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method Proc. Natl. Acad. Sci. U. S. A. 101:11030–11035. doi:10.1073/pnas.0404206101 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mendoza L, Wilkens M, Urzúa A (1997) Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae) J. Ethnopharmacol. 58:85–88CrossRefPubMedGoogle Scholar
  43. 43.
    R Development Core Team (2009) R: a launguage and environment for statistical computing. R foundation for Statistical Computing, Vienna Google Scholar
  44. 44.
    Loch TP, Faisal M (2010) Infection of lake whitefish (Coregonus Clupeaformis) with motile Aeromonas spp. in the Laurentian Great Lakes J. Great Lakes Res. 36:6–12CrossRefGoogle Scholar
  45. 45.
    Loch TP, Scribner K, Tempelman R, Whelan G, Faisal M (2012) Bacterial infections of Chinook salmon, Oncorhynchus Tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan J. Fish Dis. 35:39–50. doi:10.1111/j.1365-2761.2011.01322.x CrossRefPubMedGoogle Scholar
  46. 46.
    Faisal M, Loch T, Fujimoto M, Woodiga S, Eissa A, Honeyfield D, Wolgamood M, Walker E, Marsh T (2011) Characterization of novel Flavobacterium spp. involved in the mortality of Coho salmon (Oncorhynchus Kisutch) in their early life stages J Aquac Res Development S2:005Google Scholar
  47. 47.
    Brian, A, & Dawn, A (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Springer Publishers, New YorkGoogle Scholar
  48. 48.
    Merritt JH, Kadouri DE, O'Toole GA (2005) Growing and analyzing static biofilms Curr Protoc Microbiol 1B:1Google Scholar
  49. 49.
    Skyberg J, Siek K, Doetkott C, Nolan L (2007) Biofilm formation by avian Escherichia Coli in relation to media, source and phylogeny J. Appl. Microbiol. 102:548–554CrossRefPubMedGoogle Scholar
  50. 50.
    Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria Dev. Comp. Immunol. 25:827–839. doi:10.1016/s0145-305x(01)00038-6 CrossRefPubMedGoogle Scholar
  51. 51.
    Magnadottir B (2006) Innate immunity of fish (overview) Fish & Shellfish Immunol 20:137–151. doi:10.1016/j.fsi.2004.09.006 CrossRefGoogle Scholar
  52. 52.
    De la Fuente M, Vidal JM, Miranda CD, González G, Urrutia H (2013) Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas Fluorescens FF48 SpringerPlus 2:1–9CrossRefGoogle Scholar
  53. 53.
    Gobeli S, Goldschmidt-Clermont E, Frey J, Burr SE (2009) Pseudomonas chlororaphis strain JF3835 reduces mortality of juvenile perch, Perca Fluviatilis L., caused by Aeromonas Sobria J. Fish Dis. 32:597–602. doi:10.1111/j.1365-2761.2009.01021.x CrossRefPubMedGoogle Scholar
  54. 54.
    Korkea-aho T, Heikkinen J, Thompson K, von Wright A, Austin B (2011) Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum J. Appl. Microbiol. 111:266–277CrossRefPubMedGoogle Scholar
  55. 55.
    Rao T (2010) Comparative effect of temperature on biofilm formation in natural and modified marine environment Aquat. Ecol. 44:463–478. doi:10.1007/s10452-009-9304-1 CrossRefGoogle Scholar
  56. 56.
    Molobela I, Ilunga F (2012) Impact of bacterial biofilms: the importance of quantitative biofilm studies Ann Microbiol 62:461–467. doi:10.1007/s13213-011-0344-0 CrossRefGoogle Scholar
  57. 57.
    Chadwick T, Wright P (1999) Nitrogen excretion and expression of urea cycle enzymes in the atlantic cod (Gadus Morhua l.): a comparison of early life stages with adults J. Exp. Biol. 202:2653–2662PubMedGoogle Scholar
  58. 58.
    Steele SL, Chadwick TD, Wright PA (2001) Ammonia detoxification and localization of urea cycle enzyme activity in embryos of the rainbow trout (Oncorhynchus Mykiss) in relation to early tolerance to high environmental ammonia levels J. Exp. Biol. 204:2145–2154PubMedGoogle Scholar
  59. 59.
    Granillo A, Canales M, Espíndola M, Rivera M, de Lucio V, Tovar A (2015) Antibiosis interaction of Staphylococccus aureus on aspergillus fumigatus assessed in vitro by mixed biofilm formation BMC Microbiol. 15:33CrossRefGoogle Scholar
  60. 60.
    Liebana R, Arregui L, Santos A, Murciano A, Marquina D, Serrano S (2016) Unravelling the interactions among microbial populations found in activated sludge during biofilm formation. FEMS Microbiol Ecol 92(9). doi:10.1093/femsec/fiw134
  61. 61.
    Mehrabi Z, McMillan VE, Clark IM, Canning G, Hammond-Kosack KE, Preston G, Hirsch PR, Mauchline TH (2016) Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen Sci Rep 6:29905. doi:10.1038/srep29905 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species Nature 400:828CrossRefGoogle Scholar
  63. 63.
    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, Google Scholar
  64. 64.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities Proc. Natl. Acad. Sci. U. S. A. 103:626–631CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales Proc. Natl. Acad. Sci. U. S. A. 104:20404–20409. doi:10.1073/pnas.0707200104 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides Proc. Natl. Acad. Sci. U. S. A. 107:18067–18072CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fraune S, Augustin R, Bosch TCG (2011) Embryo protection in contemporary immunology: why bacteria matter Commun Integr Biol 4:369–372CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zapien-Campos R, Olmedo-Alvarez G, Santillan M (2015) Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach Front. Microbiol. 6:489. doi:10.3389/fmicb.2015.00489 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Madsen JS, Roder HL, Russel J, Sorensen H, Burmolle M, Sorensen SJ (2016) Coexistence facilitates interspecific biofilm formation in complex microbial communities Environ. Microbiol. 18:2565–2574. doi:10.1111/1462-2920.13335 CrossRefPubMedGoogle Scholar
  70. 70.
    Rivett DW, Scheuerl T, Culbert CT, Mombrikotb SB, Johnstone E, Barraclough TG, Bell T (2016) Resource-dependent attenuation of species interactions during bacterial succession ISME J 10:2259–2268. doi:10.1038/ismej.2016.11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Fujimoto
    • 1
  • B. Lovett
    • 1
  • R. Angoshtari
    • 1
  • P. Nirenberg
    • 1
  • T. P. Loch
    • 2
  • K. T. Scribner
    • 3
    • 4
  • T. L. Marsh
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA
  2. 2.Department of Pathobiology and Diagnostic Investigation, College of Veterinary MedicineMichigan State UniversityEast LansingUSA
  3. 3.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  4. 4.Department of ZoologyMichigan State UniversityEast LansingUSA

Personalised recommendations