Advertisement

Microbial Ecology

, Volume 75, Issue 1, pp 216–227 | Cite as

Dynamics of Soil Bacterial Communities Over a Vegetation Season Relate to Both Soil Nutrient Status and Plant Growth Phenology

  • Davide Francioli
  • Elke Schulz
  • François Buscot
  • Thomas Reitz
Soil Microbiology

Abstract

Soil microorganisms regulate element cycling and plant nutrition, mediate co-existence of neighbors, and stabilize plant communities. Many of these effects are dependent upon environmental conditions and, in particular, on nutrient quality and availability in soils. In this context, we set up a pot experiment in order to examine the combined effects of soil nutrient availability and microbial communities on plant-soil interactions and to investigate assemblage rules for soil bacterial communities under changed nutrient conditions. Four gamma-sterilized soils, strongly differing in their nutrient contents, were obtained from different fertilization treatments of a centenary field experiment and used to grow communities of grassland plants. The sterilized soils were either self- or cross-inoculated with microbial consortia from the same four soils. Molecular fingerprinting analyses were carried out at several time points in order to identify drivers and underlying processes of microbial community assemblage. We observed that the bacterial communities that developed in the inoculated sterilized soils differed from those in the original soils, displaying dynamic shifts over time. These shifts were illustrated by the appearance of numerous OTUs that had not been detected in the original soils. The community patterns observed in the inoculated treatments suggested that bacterial community assembly was determined by both niche-mediated and stochastic-neutral processes, whereby the relative impacts of these processes changed over the course of the vegetation season. Moreover, our experimental approach allowed us not only to evaluate the effects of soil nutrients on plant performance but also to recognize a negative effect of the microbial community present in the soil that had not been fertilized for more than 100 years on plant biomass. Our findings demonstrate that soil inoculation-based approaches are valid for investigating plant-soil-microbe interactions and for examining rules that shape soil microbial community assemblages under variable ecological conditions.

Keywords

Soil bacterial communities B-ARISA fingerprinting Inoculation of sterilized soil Plant-soil interactions Niche and neutral assemblage processes 

Notes

Acknowledgements

This study was financially supported by the HIGRADE PhD scholarship of Davide Francioli and by special funds provided by the Helmholtz Centre for Environmental Research - UFZ. We wish to thank Ines Merbach, Thomas Fester, and the workers of the Bad Lauchstädt research station for their support during soil sampling, and Gabriele Henning, Jacqueline Rose, and Renate Rudloff for kindly providing the edaphic data. We are also grateful to Caterina Maggi for her assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2017_1012_MOESM1_ESM.docx (5.8 mb)
ESM 1 (DOCX 5966 kb)

References

  1. 1.
    Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric Ecosyst Environ 104:113–134. doi: 10.1016/j.agee.2004.01.013 CrossRefGoogle Scholar
  2. 2.
    Wall DH, Virginia RA (2000) The world beneath our feet: soil biodiversity and ecosystem functioning. In: Raven P, Williams TA (eds) Nature and human society: the quest for a sustainable world. National Academy of Sciences Press, Washington, D.C., Google Scholar
  3. 3.
    Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability Agric Ecosyst Environ 121:233–244. doi: 10.1016/j.agee.2006.12.013 CrossRefGoogle Scholar
  4. 4.
    Lavelle P, Spain AV (2001) Functioning of the soil system soil ecology. Springer Netherlands, Dordrecht, pp. 357–529CrossRefGoogle Scholar
  5. 5.
    Coleman DC, Crossley Jr DA, Hendrix PF (2004) 7—soil biodiversity and linkages to soil processes. Fundamentals of soil ecology (second edition). Academic, Burlington, pp. 247–270Google Scholar
  6. 6.
    Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning Nature 515:505–511. doi: 10.1038/nature13855 CrossRefPubMedGoogle Scholar
  7. 7.
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  8. 8.
    Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122. doi: 10.1023/A:1019698108838 CrossRefGoogle Scholar
  9. 9.
    Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems Soil Biol Biochem 39:1878–1887. doi: 10.1016/j.soilbio.2007.02.001 CrossRefGoogle Scholar
  10. 10.
    Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JP (2007) The role of ecological theory in microbial ecology Nat Rev Microbiol 5:384–392. doi: 10.1038/nrmicro1643 CrossRefPubMedGoogle Scholar
  11. 11.
    Francioli D, Schulz E, Purahong W, Buscot F, Reitz T (2016) Reinoculation elucidates mechanisms of bacterial community assembly in soil and reveals undetected microbes Biol Fertil Soils 52:1073–1083 1–11. doi: 10.1007/s00374-016-1141-5 CrossRefGoogle Scholar
  12. 12.
    Kasel S, Bennett LT (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia Geoderma 137:401–413. doi: 10.1016/j.geoderma.2006.09.002 CrossRefGoogle Scholar
  13. 13.
    Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility Biol Fertil Soils 48:489–499. doi: 10.1007/s00374-012-0691-4 CrossRefGoogle Scholar
  14. 14.
    Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy Alice C, Dangl Jeffrey L, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms Cell Host Microbe 17:603–616. doi: 10.1016/j.chom.2015.04.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes Plant Mol Biol 90:575–587. doi: 10.1007/s11103-015-0417-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bever JD, Broadhurst LM, Thrall PH (2013) Microbial phylotype composition and diversity predicts plant productivity and plant-soil feedbacks Ecol Lett 16:167–174. doi: 10.1111/ele.12024 CrossRefPubMedGoogle Scholar
  17. 17.
    Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities Nature 417:67–70. doi: 10.1038/417067a CrossRefPubMedGoogle Scholar
  18. 18.
    Merbach I, Schulz E (2012) Long-term fertilization effects on crop yields, soil fertility and sustainability in the static fertilization experiment Bad Lauchstädt under climatic conditions 2001–2010 Arch Agron Soil Sci 59:1041–1057. doi: 10.1080/03650340.2012.702895 CrossRefGoogle Scholar
  19. 19.
    Merbach I, Körschens M (2002) The static fertilization experiment at the start and the end of the 20th Century Arch. Agron. Soil Sci. 48:413–422. doi: 10.1080/03650340215649
  20. 20.
    Blair N, Faulkner RD, Till AR, Crocker GJ (2006) Long-term management impacts on soil C, N and physical fertility: part III: Tamworth crop rotation experiment Soil Tillage Res 91:48–56. doi: 10.1016/j.still.2005.11.003 CrossRefGoogle Scholar
  21. 21.
    Schulz E (2002) Influence of extreme management on decomposable soil organic matter pool Arch Agron Soil Sci 48:101–105. doi: 10.1080/03650340214166 CrossRefGoogle Scholar
  22. 22.
    Riehm H (1945) Die Bestimmung Des Phosphorsaure Und Kalibedarfs Der Ackerboden Angew Chem-Ger Edit 58:73–76CrossRefGoogle Scholar
  23. 23.
    Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters Anal Chim Acta 27:31–36. doi: 10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  24. 24.
    Gleeson D, Clipson N, Melville K, Gadd G, McDermott F (2005) Characterization of fungal community structure on a weathered pegmatitic granite Microb Ecol 50:360–368. doi: 10.1007/s00248-005-0198-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Purahong W, Stempfhuber B, Lentendu G, Francioli D, Reitz T, Buscot F, Schloter M, Kruger D (2015) Influence of commonly used primer systems on automated ribosomal intergenic spacer analysis of bacterial communities in environmental samples PLoS One 10:e0118967. doi: 10.1371/journal.pone.0118967 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation Appl Environ Microbiol 63:2647–2653PubMedPubMedCentralGoogle Scholar
  27. 27.
    Frossard A, Gerull L, Mutz M, Gessner MO (2012) Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors ISME J 6:680–691CrossRefPubMedGoogle Scholar
  28. 28.
    Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities Appl Environ Microbiol 75:2495–2505. doi: 10.1128/aem.02409-08 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Purahong W, Hoppe B, Kahl T, Schloter M, Schulze E-D, Bauhus J, Buscot F, Krüger D (2014) Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems J Environ Manag 139:109–119. doi: 10.1016/j.jenvman.2014.02.031 CrossRefGoogle Scholar
  30. 30.
    Jones SE, Shade AL, McMahon KD, Kent AD (2007) Comparison of primer sets for use in automated ribosomal intergenic spacer analysis of aquatic bacterial communities: an ecological perspective Appl Environ Microbiol 73:659–662. doi: 10.1128/aem.02130-06 CrossRefPubMedGoogle Scholar
  31. 31.
    Weig AR, Peršoh D, Werner S, Betzlbacher A, Rambold G (2013) Diagnostic assessment of mycodiversity in environmental samples by fungal ITS1 rDNA length polymorphism Mycol Prog 12:719–725. doi: 10.1007/s11557-012-0883-1 CrossRefGoogle Scholar
  32. 32.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis Palaeontol Electron 4:1–9Google Scholar
  33. 33.
    R core Team R (2012) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, http://www.R-project.org/. Accessed 24 Sept 2012Google Scholar
  34. 34.
    Bell CH (2000) Fumigation in the 21st century Crop Prot 19:563–569CrossRefGoogle Scholar
  35. 35.
    Lotrario JB, Stuart BJ, Lam T, Arands RR, O'Connor OA, Kosson DS (1995) Effects of sterilization methods on the physical characteristics of soil: implications for sorption isotherm analyses Bull Environ Contam Toxicol 54:668–675. doi: 10.1007/BF00206097 CrossRefPubMedGoogle Scholar
  36. 36.
    McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils Appl Soil Ecol 24:117–132. doi: 10.1016/S0929-1393(03)00073-8 CrossRefGoogle Scholar
  37. 37.
    Bowen HJM, Cawse PA (1964) Some effects of gamma radiation on the composition of the soil solution and soil organic matter Soil Sci 98:358–361CrossRefGoogle Scholar
  38. 38.
    Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J, Ceccherini MT, Nannipieri P, Simonet P, Vogel TM (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil Biol Fertil Soils 50:1069–1076. doi: 10.1007/s00374-014-0925-8 CrossRefGoogle Scholar
  39. 39.
    Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy Nat Rev Microbiol 9:119–130CrossRefPubMedGoogle Scholar
  40. 40.
    Vuono DC, Munakata-Marr J, Spear JR, Drewes JE (2016) Disturbance opens recruitment sites for bacterial colonization in activated sludge Environ Microbiol 18:87–99. doi: 10.1111/1462-2920.12824 CrossRefPubMedGoogle Scholar
  41. 41.
    Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7. doi: 10.3389/fmicb.2016.01446
  42. 42.
    Mallon CA, Poly F, Le Roux X, Marring I, van Elsas JD, Salles JF (2015) Resource pulses can alleviate the biodiversity–invasion relationship in soil microbial communities Ecology 96:915–926. doi: 10.1890/14-1001.1 CrossRefPubMedGoogle Scholar
  43. 43.
    Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage Nature 497:615–618CrossRefPubMedGoogle Scholar
  44. 44.
    Moore JC, McCann K, Setala H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857CrossRefGoogle Scholar
  45. 45.
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria Ecology 88:1354–1364. doi: 10.1890/05-1839 CrossRefPubMedGoogle Scholar
  46. 46.
    Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities ISME J 5:1086–1094. doi: 10.1038/ismej.2010.207 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community ISME J 4:337–345CrossRefPubMedGoogle Scholar
  48. 48.
    Pontarp M, Canbäck B, Tunlid A, Lundberg P (2012) Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe Microb Ecol 64:8–17. doi: 10.1007/s00248-011-0005-7 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere Plant Signal Behav 4:777–780CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis Ecol Lett 9:399–409. doi: 10.1111/j.1461-0248.2006.00884.x CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang Q-G, Buckling A, Godfray HCJ (2009) Quantifying the relative importance of niches and neutrality for coexistence in a model microbial system Funct Ecol 23:1139–1147. doi: 10.1111/j.1365-2435.2009.01579.x CrossRefGoogle Scholar
  52. 52.
    Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test Oikos 117:1308–1320. doi: 10.1111/j.0030-1299.2008.16724.x CrossRefGoogle Scholar
  53. 53.
    Troelstra SR, Wagenaar R, Smant W, Peters BAM (2001) Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors New Phytol 150:697–706. doi: 10.1046/j.1469-8137.2001.00133.x CrossRefGoogle Scholar
  54. 54.
    Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms Trends Ecol Evol 12:139–143. doi: 10.1016/S0169-5347(97)01001-X CrossRefPubMedGoogle Scholar
  55. 55.
    Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance New Phytol 198:656–669. doi: 10.1111/nph.12235 CrossRefPubMedGoogle Scholar
  56. 56.
    Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands Ecology 84:1277–1287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Soil EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
  2. 2.Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
  3. 3.German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations