Microbial Ecology

, Volume 74, Issue 4, pp 771–775 | Cite as

Survey of High-Affinity H2-Oxidizing Bacteria in Soil Reveals Their Vast Diversity Yet Underrepresentation in Genomic Databases

  • Sarah Piché-Choquette
  • Mondher Khdhiri
  • Philippe Constant
Note

Abstract

While high-affinity H2-oxidizing bacteria (HA-HOB) serve as the main sink of atmospheric H2, the ecology of this specialist functional group is rather unknown due to its recent discovery. The main purpose of our study is to provide the first extensive survey of HA-HOB in farmland, larch, and poplar soils exposed to 0.5 and 10,000 ppmv H2. Using qPCR and qRT-PCR assays along with PCR amplicon high-throughput sequencing of hhyL gene encoding for the large subunit of high-affinity [NiFe]-hydrogenases (HAH), we found that hhyL gene expression ratio explained better variation in measured H2 oxidation rates than HA-HOB species richness. Carbon, nitrogen, pH, and bacterial species richness appeared as the most important drivers of HA-HOB community structure. Our study also highlights the need to cultivate HA-HOB due to the huge gap in current genomic databases.

Keywords

Biogeochemistry H2-oxidizing bacteria High-throughput sequencing Trace gas 

Notes

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant to P.C. The authors acknowledge use of McGill University and Génome Québec Innovation Centre for the preparation of hhyL gene libraries and sequencing services. S.P.-C. and M.K. are grateful to the Fondation Universitaire Armand-Frappier INRS for their Ph.D. scholarship.

Supplementary material

248_2017_1011_MOESM1_ESM.docx (23 kb)
ESM 1(DOCX 23 kb)
248_2017_1011_MOESM2_ESM.pdf (945 kb)
ESM 2(PDF 945 kb)
248_2017_1011_MOESM3_ESM.xlsx (59 kb)
ESM 3(XLSX 58 kb)
248_2017_1011_MOESM4_ESM.xlsx (15 kb)
ESM 4(XLSX 15 kb)

References

  1. 1.
    Pieterse G, Krol MC, Batenburg AM, Brenninkmeijer CAM, Popa ME, O'Doherty S, Grant A, Steele LP, Krummel PB, Langenfelds RL, Wang HJ, Vermeulen AT, Schmidt M, Yver C, Jordan A, Engel A, Fisher RE, Lowry D, Nisbet EG, Reimann S, Vollmer MK, Steinbacher M, Hammer S, Forster G, Sturges WT, Röckmann T (2013) Reassessing the variability in atmospheric H2 using the two-way nested TM5 model J Geophys Res Atmos 118:3764–3780. doi:10.1002/jgrd.50204 CrossRefGoogle Scholar
  2. 2.
    Constant P, Poissant L, Villemur R (2008) Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2 ISME J 2:1066–1076. doi:10.1038/ismej.2008.59 CrossRefPubMedGoogle Scholar
  3. 3.
    Liot Q, Constant P (2016) Breathing air to save energy-new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis Microbiol Open 5:47–59. doi:10.1002/mbo3.310 CrossRefGoogle Scholar
  4. 4.
    Greening C, Berney M, Hards K, Cook GM, Conrad R (2014) A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe]-hydrogenases Proc Natl Acad Sci U S A 111:4257–4261. doi:10.1073/pnas.1320586111 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meredith LK, Rao D, Bosak T, Klepac-Ceraj V, Tada KR, Hansel CM, Ono S, Prinn RG (2014) Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria Environ Microbiol Rep 6:226–238. doi:10.1111/1758-2229.12116 CrossRefPubMedGoogle Scholar
  6. 6.
    Myers MR, King GM (2016) Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat Int J Syst Evol Microbiol 66:5328–5335. doi:10.1099/ijsem.0.001516 CrossRefPubMedGoogle Scholar
  7. 7.
    Gödde M, Meuser K, Conrad R (2000) Hydrogen consumption and carbon monoxide production in soils with different properties Biol Fertil Soils 32:129–134. doi:10.1007/s003740000226 CrossRefGoogle Scholar
  8. 8.
    Smith-Downey NV, Randerson JT, Eiler JM (2006) Temperature and moisture dependence of soil H2 uptake measured in the laboratory Geophys Res Lett 33:L14813. doi:10.1029/2006GL026749 CrossRefGoogle Scholar
  9. 9.
    Ehhalt DH, Rohrer F (2009) The tropospheric cycle of H2: a critical review Tellus B 61:500–535. doi:10.1111/j.1600-0889.2009.00416.x CrossRefGoogle Scholar
  10. 10.
    Khdhiri M, Piche-Choquette S, Tremblay J, Tringe SG, Constant P (2017) The tale of a neglected energy source: elevated hydrogen exposure affects both microbial diversity and function in soil. Appl Environ Microbiol 83. doi:10.1128/aem.00275-17
  11. 11.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R (2011) Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria Appl Environ Microbiol 77:6027–6035. doi:10.1128/aem.00673-11 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Khdhiri M, Hesse L, Popa ME, Quiza L, Lalonde I, Meredith LK, Röckmann T, Constant P (2015) Soil carbon content and relative abundance of high-affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition Soil Biol Biochem 85:1–9. doi:10.1016/j.soilbio.2015.02.030 CrossRefGoogle Scholar
  13. 13.
    Glenn TC (2011) Field guide to next-generation DNA sequencers Mol Ecol Resour 11:759–769. doi:10.1111/j.1755-0998.2011.03024.x CrossRefPubMedGoogle Scholar
  14. 14.
    Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies Bioinformatics 27:2957–2963. doi:10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  16. 16.
    Piche-Choquette S, Tremblay J, Tringe SG, Constant P (2016) H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups PeerJ 4:e1782. doi:10.7717/peerj.1782 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berney M, Greening C, Hards K, Collins D, Cook GM (2014) Three different [NiFe]-hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis Environ Microbiol 16:318–330CrossRefPubMedGoogle Scholar
  18. 18.
    Conrad R, Weber M, Seiler W (1983) Kinetics and electron transport of soil hydrogenases catalyzing the oxidation of atmospheric hydrogen Soil Biol Biochem 15:167–173. doi:10.1016/0038-0717(83)90098-6 CrossRefGoogle Scholar
  19. 19.
    Schuler S, Conrad R (1990) Soils contain two different activities for oxidation of hydrogen FEMS Microbiol Lett 73:77–83. doi:10.1111/j.1574-6968.1990.tb03927.x CrossRefGoogle Scholar
  20. 20.
    Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, Flater J, Tiedje JM, Hofmockel KS, Gelder B, Howe A (2017) Strategies to improve reference databases for soil microbiomes ISME J 11:829–834. doi:10.1038/ismej.2016.168 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.INRS-Institut Armand-FrappierLavalCanada

Personalised recommendations