Microbial Ecology

, Volume 74, Issue 4, pp 821–831 | Cite as

Inhibitory Effect of Taurine on Biofilm Formation During Alkane Degradation in Acinetobacter oleivorans DR1

  • Hyo Jung Eom
  • Woojun ParkEmail author
Environmental Microbiology


Taurine, 2-aminoethanesulfonate, is known to function as an antioxidant or membrane stabilizer in eukaryotic cells, but its role in bacteria has been poorly characterized. Biofilm formation of Acinetobacter oleivorans DR1 was significantly reduced by taurine only during alkane degradation, suggesting that taurine affects alkane-induced cell surface. Structurally similar compounds harboring an amine group such as hypotaurine or ethylenediamine have a similar effect, which was not observed with sulfonate-containing chemicals such as ethanesulfonic acid, hexanesulfonic acid. Our biochemical assays and physiological tests demonstrate that taurine reduced cell surface hydrophobicity, which resulted in interruption of the interactions between cells and oily substrate surfaces, such that cells utilized alkanes less effectively. Interestingly, taurine-mediated reduction of quorum sensing (QS) signal production and QS-control sapA gene expression indicated that membrane permeability of quorum signals was also interfered by taurine. Composition and biomass of extracellular polymeric saccharides were changed in taurine-amended conditions. Taken together, our data provide evidence that amine-containing taurine can inhibit biofilm formation of DR1 cells during alkane degradation by (i) changing cell surface charge and (ii) reducing membrane hydrophobicity and QS sensing.


Biofilm Taurine Acinetobacter oleivorans Hydrophobicity Oil-degrading bacteria 



This work was supported by a National Research Foundation of Korea (NRF) grant to WP funded by the Korea government (MSIP) (No. NRF-2017R1A2B4005838).

Author Contributions

HJE and WP designed the study. HJE performed all experiments and analysis. HJE and WP drafted the manuscript. HJE and WP provided substantial discussion and modifications. All authors contributed to and approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Flemming HC, Wingender J (2010) The biofilm matrix Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  2. 2.
    Bogino PC, Oliva Mde L, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations Int. J. Mol. Sci. 14:15838–15859CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    de Cock H, Brandenburg K, Wiese A, Holst O, Seydel U (1999) Non-lamellar structure and negative charges of lipopolysaccharides required for efficient folding of outer membrane protein PhoE of Escherichia coli J. Biol. Chem. 274:5114–5119CrossRefPubMedGoogle Scholar
  4. 4.
    Meiron TS, Saguy IS (2007) Adhesion modeling on rough low linear density polyethylene J. Food Sci. 72:E485–E491CrossRefPubMedGoogle Scholar
  5. 5.
    Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification J. Ind. Microbiol. 15:391–396CrossRefPubMedGoogle Scholar
  6. 6.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms Annu. Rev. Microbiol. 49:711–745CrossRefPubMedGoogle Scholar
  7. 7.
    Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria FEMS Microbiol. Ecol. 49:419–432CrossRefPubMedGoogle Scholar
  8. 8.
    Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria Science 330:204–208CrossRefPubMedGoogle Scholar
  9. 9.
    Wang JL, Liu P, Qian Y (1997) Biodegradation of phthalic acid esters by immobilized microbial cells Environ. Int. 23:775–782CrossRefGoogle Scholar
  10. 10.
    Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir Biochem. Eng. J. 31:148–159CrossRefGoogle Scholar
  11. 11.
    Chandran P, Das N (2011) Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels Biodegradation 22:1181–1189CrossRefPubMedGoogle Scholar
  12. 12.
    Ramkrishna S (2010) Biosurfactants. Springer Science & Business Media, USA, Google Scholar
  13. 13.
    Chandler D (2005) Interfaces and the driving force of hydrophobic assembly Nature 437:640–647CrossRefPubMedGoogle Scholar
  14. 14.
    Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874 Appl. Environ. Microbiol. 73:3327–3332CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Abdel-El-Haleem D (2003) Acinetobacter: environmental and biotechnological applications Afr. J. Biotechnol. 2:71–74CrossRefGoogle Scholar
  16. 16.
    Jung J, Baek JH, Park W (2010) Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1 J. Bacteriol. 192:4794–4795CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kang YS, Park W (2010) Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1 J. Appl. Microbiol. 109:1650–1659PubMedGoogle Scholar
  18. 18.
    Diggle SP, Crusz SA, Camara M (2007) Quorum sensing Curr. Biol. 17:R907–R910CrossRefPubMedGoogle Scholar
  19. 19.
    Egland KA, Greenberg EP (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis J. Bacteriol. 183:382–386CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim J, Park W (2013) Identification and characterization of genes regulated by AqsR, a LuxR-type regulator in Acinetobacter oleivorans DR1 Appl. Microbiol. Biotechnol. 97:6967–6978CrossRefPubMedGoogle Scholar
  21. 21.
    Jung J, Noh J, Park W (2011) Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1 J. Microbiol. 49:208–215CrossRefPubMedGoogle Scholar
  22. 22.
    Jang IA, Kim J, Park W (2016) Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1 Sci Rep 6:21121. doi: 10.1038/srep21121 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes Can. J. Physiol. Pharmacol. 87:91–99CrossRefPubMedGoogle Scholar
  24. 24.
    Salceda R (1999) Insulin-stimulated taurine uptake in rat retina and retinal pigment epithelium Neurochem. Int. 35:301–306CrossRefPubMedGoogle Scholar
  25. 25.
    Stevens MJ, Hosaka Y, Masterson JA, Jones SM, Thomas TP, Larkin DD (1999) Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells Am. J. Phys. 277:E760–E771Google Scholar
  26. 26.
    Graf R, Kock M, Bock A, Schubert-Zsilavecz M, Steinhilber D, Kaufmann R, Gassenmeier T, Beschmann H, Bernd A, Kippenberger S (2009) Lipophilic prodrugs of amino acids and vitamin E as osmolytes for the compensation of hyperosmotic stress in human keratinocytes Exp. Dermatol. 18:370–377CrossRefPubMedGoogle Scholar
  27. 27.
    Falany CN, Johnson MR, Barnes S, Diasio RB (1994) Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase J. Biol. Chem. 269:19375–19379PubMedGoogle Scholar
  28. 28.
    Eichhorn E, van der Ploeg JR, Leisinger T (2000) Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems J. Bacteriol. 182:2687–2695CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krejčík Z, Schleheck D, Hollemeyer K, Cook AM (2012) A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164 Arch. Microbiol. 194:857–863CrossRefPubMedGoogle Scholar
  30. 30.
    Gorzynska AK, Denger K, Cook AM, Smits TH (2006) Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T Arch. Microbiol. 185:402–406CrossRefPubMedGoogle Scholar
  31. 31.
    Reichenbecher W, Murrell JC (1999) Linear alkanesulfonates as carbon and energy sources for gram-positive and gram-negative bacteria Arch. Microbiol. 171:430–438CrossRefPubMedGoogle Scholar
  32. 32.
    Jung J, Jang IA, Ahn S, Shin B, Kim J, Park C, Jee SC, Sung JS, Park W (2015) Molecular mechanisms of enhanced bacterial growth on hexadecane with red clay Microb. Ecol. 70:912–921CrossRefPubMedGoogle Scholar
  33. 33.
    Kang YS, Jung J, Jeon CO, Park W (2011) Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil J. Microbiol. 49:29–34CrossRefPubMedGoogle Scholar
  34. 34.
    Weinitschke S, von Rekowski KS, Denger K, Cook AM (2005) Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen Microbiology 151:1285–1290CrossRefPubMedGoogle Scholar
  35. 35.
    O’Toole GA (2011) Microtiter dish biofilm formation assay J. Vis. Exp. 30:2437. doi: 10.3791/2437 Google Scholar
  36. 36.
    Sorongon ML, Bloodgood RA, Burchard RP (1991) Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria Appl. Environ. Microbiol. 57:3193–3199PubMedPubMedCentralGoogle Scholar
  37. 37.
    Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides J. Biol. Chem. 274:8405–8410CrossRefPubMedGoogle Scholar
  38. 38.
    Choi S, Jung J, Jeon CO, Park W (2014) Comparative genomic and transcriptomic analyses of NaCl-tolerant Staphylococcus sp. OJ82 isolated from fermented seafood Appl. Microbiol. Biotechnol. 98:807–822CrossRefPubMedGoogle Scholar
  39. 39.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Google Scholar
  40. 40.
    Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria Mol. Plant-Microbe Interact. 11:1119–1129CrossRefPubMedGoogle Scholar
  41. 41.
    Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Google Scholar
  42. 42.
    Bales PM, Renke EM, May SL, Shen Y, Nelson DC (2013) Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens PLoS One 8:e67950. doi: 10.1371/journal.pone.0067950 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment J. Bacteriol. 188:8213–8221CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dagorn A, Hillion M, Chapalain A, Lesouhaitier O, Duclairoir Poc C, Vieillard J, Chevalier S, Taupin L, Le Derf F, Feuilloley MG (2013) Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa Microbiology 159:339–351CrossRefPubMedGoogle Scholar
  45. 45.
    Dagorn A, Chapalain A, Mijouin L, Hillion M, Duclairoir-Poc C, Chevalier S, Taupin L, Orange N, Feuilloley MG (2013) Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity Int. J. Mol. Sci. 14:12186–12204CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guo Q, Li H, Xu D-H, Park SI (2012) Modified a colony forming unit microbial adherence to hydrocarbons assay and evaluated cell surface hydrophobicity and biofilm production of Vibrio scophthalmi J Bacteriol Parasitol 3:1–6Google Scholar
  47. 47.
    Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG (2015) Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp Front. Microbiol. 6:205. doi: 10.3389/fmicb.2015.00205 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zita A, Hermansson M (1997) Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ FEMS Microbiol. Lett. 152:299–306CrossRefPubMedGoogle Scholar
  49. 49.
    Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces Appl. Environ. Microbiol. 55:832–836PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang W, Shao Z (2014) The long-chain alkane metabolism network of Alcanivorax dieselolei Nat. Commun. 5:5755. doi: 10.1038/ncomms6755 CrossRefPubMedGoogle Scholar
  51. 51.
    Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis Nat. Biotechnol. 24:997–1004CrossRefPubMedGoogle Scholar
  52. 52.
    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria Curr. Opin. Biotechnol. 18:257–266CrossRefPubMedGoogle Scholar
  53. 53.
    Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons Int. J. Syst. Evol. Microbiol. 54:141–148CrossRefPubMedGoogle Scholar
  54. 54.
    Golyshin PN, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons Int. J. Syst. Evol. Microbiol. 52:901–911PubMedGoogle Scholar
  55. 55.
    Rojo F (2009) Degradation of alkanes by bacteria Environ. Microbiol. 11:2477–2490CrossRefPubMedGoogle Scholar
  56. 56.
    Kalia VC (2013) Quorum sensing inhibitors: an overview Biotechnol. Adv. 31:224–245CrossRefPubMedGoogle Scholar
  57. 57.
    Richards JJ, Melander C (2009) Controlling bacterial biofilms Chembiochem 10:2287–2294CrossRefPubMedGoogle Scholar
  58. 58.
    Baysse C, Cullinane M, Dénervaud V, Burrowes E, Dow JM, Morrissey JP, Tam L, Trevors JT, O’Gara F (2005) Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties Microbiology 151:2529–2542CrossRefPubMedGoogle Scholar
  59. 59.
    Flemming CA (1988) Cell surface physicochemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants Biofouling 13:213–231CrossRefGoogle Scholar
  60. 60.
    Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation Appl. Environ. Microbiol. 78:6217–6224CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bryan BA, Linhardt RJ, Daniels L (1986) Variation in composition and yield of exopolysaccharides produced by Klebsiella sp. strain K32 and Acinetobacter calcoaceticus BD4 Appl. Environ. Microbiol. 51:1304–1308PubMedPubMedCentralGoogle Scholar
  62. 62.
    Bahat-Samet E, Castro-Sowinski S, Okon Y (2004) Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense FEMS Microbiol. Lett. 237:195–203CrossRefPubMedGoogle Scholar
  63. 63.
    Bao G, Zhu X, Xu C, Yue Q, Li W, Wei J (2008) Influence of extracellular polymeric substances on microbial activity and cell hydrophobicity in biofilms J. Chem. Technol. Biotechnol. 83:227–232CrossRefGoogle Scholar
  64. 64.
    Smiley DW, Wilkinson BJ (1983) Survey of taurine uptake and metabolism in Staphylococcus aureus J. Gen. Microbiol. 129:2421–2428PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations