Microbial Ecology

, Volume 75, Issue 1, pp 274–288 | Cite as

Seasonal Stability in the Microbiomes of Temperate Gorgonians and the Red Coral Corallium rubrum Across the Mediterranean Sea

  • Jeroen A. J. M. van de WaterEmail author
  • Christian R. Voolstra
  • Cecile Rottier
  • Silvia Cocito
  • Andrea Peirano
  • Denis Allemand
  • Christine Ferrier-Pagès
Host Microbe Interactions


Populations of key benthic habitat-forming octocoral species have declined significantly in the Mediterranean Sea due to mass mortality events caused by microbial disease outbreaks linked to high summer seawater temperatures. Recently, we showed that the microbial communities of these octocorals are relatively structured; however, our knowledge on the seasonal dynamics of these microbiomes is still limited. To investigate their seasonal stability, we collected four soft gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa and Leptogorgia sarmentosa) and the precious red coral (Corallium rubrum) from two coastal locations with different terrestrial impact levels in the Mediterranean Sea, and used next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all soft gorgonian species were dominated by the same ‘core microbiome’ bacteria belonging to the Endozoicomonas and the Cellvibrionales clade BD1-7, whereas the red coral microbiome was primarily composed of ‘core’ Spirochaetes, Oceanospirillales ME2 and Parcubacteria. The associations with these bacterial taxa were relatively consistent over time at each location for each octocoral species. However, differences in microbiome composition and seasonal dynamics were observed between locations and could primarily be attributed to locally variant bacteria. Overall, our data provide further evidence of the intricate symbiotic relationships that exist between Mediterranean octocorals and their associated microbes, which are ancient and highly conserved over both space and time, and suggest regulation of the microbiome composition by the host, depending on local conditions.


Endozoicomonas Spirochaetes Red coral Gorgonian 16S rRNA gene Bacterial community Holobiont Evolution Microbiome Symbiosis 



The authors would like to thank Stéphanie Reynaud and Eric Beraud from the Centre Scientifique de Monaco, and Gabriella Cerrati and Andrea Bordone from ENEA for help with sample collections. Craig Michell is thanked for his assistance with the 16S gene amplicon library preparation. We would also like to thank the Paul Hamel Foundation and KAUST for financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2017_1006_MOESM1_ESM.xlsx (51 kb)
ESM 1 (XLSX 50 kb)
248_2017_1006_MOESM2_ESM.xlsx (26 kb)
ESM 5 (XLSX 26.3 kb)
248_2017_1006_MOESM3_ESM.xlsx (100 kb)
ESM 2 (XLSX 99.5 kb)
248_2017_1006_MOESM4_ESM.xlsx (248 kb)
ESM 3 (XLSX 247 kb)
248_2017_1006_MOESM5_ESM.eps (1.1 mb)
High Resolution Image (EPS 1080 kb)


  1. 1.
    Bosch TCG, McFall-Ngai MJ (2011) Metaorganisms as the new frontier Zoology (Jena, Germany) 114(4):185–190CrossRefGoogle Scholar
  2. 2.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences Proc Natl Acad Sci 110(9):3229–3236Google Scholar
  3. 3.
    Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria Appl Environ Microbiol 79(15):4759–4762Google Scholar
  4. 4.
    Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, Gates RD, Padilla-Gamino JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts Isme J 9(10):2261–2274CrossRefGoogle Scholar
  5. 5.
    Hernandez-Agreda A, Gates RD, Ainsworth TD Defining the core microbiome in microbial soup Trends Microbiol 25(2):125–140Google Scholar
  6. 6.
    Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats mBio 7 (4)Google Scholar
  7. 7.
    van de Water JAJM, Melkonian R, Voolstra CR, Junca H, Beraud E, Allemand D, Ferrier-Pagès C (2016) Comparative assessment of Mediterranean gorgonian-associated microbial communities reveals conserved core and locally variant bacteria Microb Ecol 73(2):466–478Google Scholar
  8. 8.
    Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C (2017) The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status MBio 8(1):e02058-16Google Scholar
  9. 9.
    Lema KA, Willis BL, Bourne DG (2012) Corals form characteristic associations with symbiotic nitrogen-fixing bacteria Appl Environ Microbiol 78(9):3136–3144CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur Appl Environ Microbiol 75(11):3492–3501CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kvennefors EC, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont Microb Ecol 63(3):605–618CrossRefPubMedGoogle Scholar
  12. 12.
    Nissimov J, Rosenberg E, Munn CB (2009) Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica FEMS Microbiol Lett 292(2):210–215CrossRefPubMedGoogle Scholar
  13. 13.
    Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  14. 14.
    Shnit-Orland M, Sivan A, Kushmaro A (2012) Antibacterial activity of Pseudoalteromonas in the coral holobiont Microb Ecol 64(4):851–859CrossRefPubMedGoogle Scholar
  15. 15.
    Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  16. 16.
    Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria Environ Microbiol 12(1):28–39CrossRefPubMedGoogle Scholar
  17. 17.
    van de Water JAJM, Lamb JB, van Oppen MJH, Willis BL, Bourne DG (2015) Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms Conserv Physiol 3(1):cov032Google Scholar
  18. 18.
    van de Water JAJM, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, Ferrier-Pagès C (2016) Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale Sci Rep 6:27277CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ballesteros E (2006) Mediterranean coralligenous assemblages. In: Oceanography and Marine Biology. Oceanography and Marine Biology—An Annual Review. CRC Press, pp 123–195.Google Scholar
  20. 20.
    Correa H, Haltli B, Duque C, Kerr R (2013) Bacterial communities of the gorgonian Octocoral Pseudopterogorgia elisabethae Microb Ecol 66(4):972–985CrossRefPubMedGoogle Scholar
  21. 21.
    Bayer T, Arif C, Ferrier-Pagès C, Zoccola D, Aranda M, Voolstra C (2013) Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini Mar Ecol Prog Ser 479:75–84CrossRefGoogle Scholar
  22. 22.
    La Rivière M, Garrabou J, Bally M (2015) Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals Coral Reefs 34(4):1087–1098Google Scholar
  23. 23.
    Ransome E, Rowley SJ, Thomas S, Tait K, Munn CB (2014) Disturbance to conserved bacterial communities in the cold-water gorgonian coral Eunicella verrucosa FEMS Microbiol Ecol 90(2):404–416PubMedGoogle Scholar
  24. 24.
    Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas Appl Microbiol Biotechnol 100(19):8315–8324CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wessels W, Sprungala S, Watson SA, Miller DJ, Bourne DG (2017) The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress FEMS Microbiol Ecol 93(5):fix013CrossRefGoogle Scholar
  26. 26.
    Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW (2016) Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species Front Microbiol 7:458CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts Science 283(5402):686–689CrossRefPubMedGoogle Scholar
  28. 28.
    Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes Science 292(5526):2495–2498CrossRefPubMedGoogle Scholar
  29. 29.
    Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals Mar Biol 125(2):411–419CrossRefGoogle Scholar
  30. 30.
    Kim K, Harvell CD, Kim PD, Smith GW, Merkel SM (2000) Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.) Mar Biol 136(2):259–267CrossRefGoogle Scholar
  31. 31.
    Kim K (1994) Antimicrobial activity in gorgonian corals (Coelenterata, Octocorallia) Coral Reefs 13(2):75–80CrossRefGoogle Scholar
  32. 32.
    Hunt LR, Smith SM, Downum KR, Mydlarz LD (2012) Microbial regulation in gorgonian corals Mar Drugs 10(6):1225–1243CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vezzulli L, Pezzati E, Huete-Stauffer C, Pruzzo C, Cerrano C (2013) 16SrDNA pyrosequencing of the Mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks PLoS One 8(6):e67745CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change Glob Chang Biol 13(10):2078–2088CrossRefGoogle Scholar
  35. 35.
    Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, the VibrioSea Consortium (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea Environ Microbiol 12(7):2007–2019CrossRefPubMedGoogle Scholar
  36. 36.
    Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean Proc Natl Acad Sci 106(15):6176–6181CrossRefPubMedGoogle Scholar
  37. 37.
    Cupido R, Cocito S, Barsanti M, Sgorbini S, Peirano A, Santangelo G (2009) Unexpected long-term population dynamics in a canopy-forming gorgonian coral following mass mortality Mar Ecol Prog Ser 394:195–200CrossRefGoogle Scholar
  38. 38.
    Astraldi M, Gasparini G (1986) La circolazione costiera nel Mar Ligure Orientale Bollettino dei Musei e degli Istituti Biologici dell’Universita` di Genova 52:317–331Google Scholar
  39. 39.
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing PLoS One 3(7):e2836CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F, Becker K, Wos-Oxley ML, Pieper DH (2014) Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing Environ Microbiol 16(9):2939–2952CrossRefPubMedGoogle Scholar
  41. 41.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools Nucleic Acids Res 41(D1):D590–D596CrossRefPubMedGoogle Scholar
  43. 43.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection Bioinformatics 27(16):2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  45. 45.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data PLoS One 8(4):e61217CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol 15(12):550CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Spring S, Scheuner C, Goker M, Klenk HP (2015) A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data Front Microbiol 6:281CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Spring S, Riedel T (2013) Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability BMC Microbiol 13(1):117CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Oh H-M, Kang I, Ferriera S, Giovannoni SJ, Cho J-C (2010) Genome sequence of the oligotrophic marine Gammaproteobacterium HTCC2143, isolated from the Oregon Coast J Bacteriol 192(17):4530–4531CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2015) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea Mar Pollut Bull 105(2):629–640CrossRefGoogle Scholar
  51. 51.
    Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015) Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences Mol Ecol 24(13):3501–3511CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions PLoS One 9(6):e100316CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, Schmidt C, Uthicke S (2016) Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification Sci Rep 6:19324CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gardères J, Bedoux G, Koutsouveli V, Crequer S, Desriac F, Pennec G (2015) Lipopolysaccharides from commensal and opportunistic bacteria: characterization and response of the immune system of the host sponge Suberites domuncula Mar Drugs 13(8):4985CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges Isme J 9(4):894–908CrossRefPubMedGoogle Scholar
  56. 56.
    Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, Voolstra CR (2013) In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii PLoS One 8(4):e62091CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rua CPJ, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS, Lima A, Kruger R, Pereira RC, Berlinck RGS, Valle RAB, Thompson CC, Thompson F (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis PeerJ 2:e419CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts Isme J 7(7):1452–1458CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Forget NL, Kim Juniper S (2013) Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge MicrobiologyOpen 2(2):259–275CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillo D, Mueller MG, Natale L, Zucchetti I, De Santis R, Pinto MR, Litman GW, Gilbert JA (2014) The gut of geographically disparate Ciona intestinalis harbors a core microbiota PLoS One 9(4):e93386CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007 Int J Syst Evol Microbiol 63(Pt 2):709–714CrossRefPubMedGoogle Scholar
  62. 62.
    Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2016) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales Isme J 11(1):186–200Google Scholar
  63. 63.
    Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for white syndrome (WS) epizootics in the Indo-Pacific PLoS One 3(6):e2393CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus Appl Environ Microbiol 69(7):4236–4242CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1 Mar Ecol Prog Ser 147:159–165CrossRefGoogle Scholar
  66. 66.
    Rubio-Portillo E, Yarza P, Penalver C, Ramos-Espla AA, Anton J (2014) New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities Isme J 8(9):1794–1807CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Holm JB, Heidelberg KB (2016) Microbiomes of Muricea californica and M. fruticosa: comparative analyses of two co-occurring eastern Pacific octocorals Front Microbiol 7 (917)Google Scholar
  68. 68.
    Gray MA, Stone RP, McLaughlin MR, Kellogg CA (2011) Microbial consortia of gorgonian corals from the Aleutian islands FEMS Microbiol Ecol 76(1):109–120CrossRefPubMedGoogle Scholar
  69. 69.
    Penn K, Wu D, Eisen JA, Ward N (2006) Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts Appl Environ Microbiol 72(2):1680–1683CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture-independent Characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico Appl Environ Microbiol 75(8):2294–2303CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Neulinger SC, Gärtner A, Järnegren J, Ludvigsen M, Lochte K, Dullo W-C (2009) Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia) Appl Environ Microbiol 75(5):1437–1444CrossRefPubMedGoogle Scholar
  72. 72.
    Mortzfeld BM, Urbanski S, Reitzel AM, Kunzel S, Technau U, Fraune S (2016) Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography Environ Microbiol 18(6):1764–1781CrossRefPubMedGoogle Scholar
  73. 73.
    Wang Y, Stingl U, Anton-Erxleben F, Geisler S, Brune A, Zimmer M (2004) “Candidatus Hepatoplasma crinochetorum,” a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod Appl Environ Microbiol 70(10):6166–6172CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fraune S, Zimmer M (2008) Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts Environ Microbiol 10(10):2497–2504CrossRefPubMedGoogle Scholar
  75. 75.
    Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra Proc Natl Acad Sci U S A 104(32):13146–13151CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods Appl Environ Microbiol 78(12):4149–4156CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance Nat Commun 8:14213CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Walmsley TA, Matcher GF, Zhang F, Hill RT, Davies-Coleman MT, Dorrington RA (2012) Diversity of bacterial communities associated with the Indian Ocean sponge Tsitsikamma favus that contains the bioactive pyrroloiminoquinones, tsitsikammamine A and B Mar Biotechnol (New York, NY) 14(6):681–691CrossRefGoogle Scholar
  79. 79.
    Israelsson O (2007) Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia) J Invertebr Pathol 96(3):213–220CrossRefPubMedGoogle Scholar
  80. 80.
    Li J, Chen Q, Long L-J, Dong J-D, Yang J, Zhang S (2014) Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons Sci Rep 4:7320CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chen C-P, Tseng C-H, Chen CA, Tang S-L (2011) The dynamics of microbial partnerships in the coral Isopora palifera Isme J 5(4):728–740CrossRefPubMedGoogle Scholar
  82. 82.
    Ceh J, Van Keulen M, Bourne DG (2011) Coral-associated bacterial communities on Ningaloo Reef, Western Australia FEMS Microbiol Ecol 75(1):134–144CrossRefPubMedGoogle Scholar
  83. 83.
    Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ (2013) The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline Environ Microbiol 15(7):2082–2094CrossRefPubMedGoogle Scholar
  84. 84.
    Meistertzheim A-L, Lartaud F, Arnaud-Haond S, Kalenitchenko D, Bessalam M, Le Bris N, Galand PE (2016) Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species Deep-Sea Res I Oceanogr Res Pap 114:12–22CrossRefGoogle Scholar
  85. 85.
    La Rivière M, Roumagnac M, Garrabou J, Bally M (2013) Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea PLoS One 8(2):e57385CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event Isme J 2(4):350–363CrossRefPubMedGoogle Scholar
  87. 87.
    Cocito S, Bedulli D, Sgorbini S (2002) Distribution patterns of the sublittoral epibenthic assemblages on a rocky shoal in the Ligurian Sea (NW Mediterranean) Sci Mar 66(2):175–181CrossRefGoogle Scholar
  88. 88.
    Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces Appl Environ Microbiol 68(5):2214–2228CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sekar R, Kaczmarsky L, Richardson L (2008) Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean Mar Ecol Prog Ser 362:85–98CrossRefGoogle Scholar
  90. 90.
    Ruehland C, Blazejak A, Lott C, Loy A, Erséus C, Dubilier N (2008) Multiple bacterial symbionts in two species of co-occurring gutless oligochaete worms from Mediterranean sea grass sediments Environ Microbiol 10(12):3404–3416CrossRefPubMedGoogle Scholar
  91. 91.
    Brune A (2014) Symbiotic digestion of lignocellulose in termite guts Nat Rev Microbiol 12(3):168–180CrossRefPubMedGoogle Scholar
  92. 92.
    Sally AM, Smucker RA (1987) Role of Cristispira sp. and other bacteria in the chitinase and chitobiase activities of the crystalline style of Crassostrea virginica (Gmelin) Microb Ecol 14(2):157–166CrossRefGoogle Scholar
  93. 93.
    Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11 Appl Environ Microbiol 70(2):845–849CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Nelson W, Stegen J (2015) The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle Front Microbiol 6 (713)Google Scholar
  95. 95.
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution Nat Rev Microbiol 5(5):355–362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Centre Scientifique de MonacoMonacoMonaco
  2. 2.Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  3. 3.Marine Environment Research CentreENEALa SpeziaItaly

Personalised recommendations